期刊文献+

基于统计参数的自适应网络推理系统在局部放电缺陷识别中的应用 被引量:2

Application of ANFIS to Partial Discharge Defect Recognition Based on Statistical Parameters
下载PDF
导出
摘要 高压电力设备在发生绝缘劣化的早期,内部会出现局部放电现象,笔者依据检测得到的局放信号,提出了采用基于统计参数的自适应网络推理系统进行绝缘缺陷模式识别的方法。自适应网络推理系统是神经网络和模糊逻辑的结合,通过模糊逻辑进行识别系统建模,利用神经网络训练系统参数。设计并实验了4种绝缘缺陷模型,对多周期的局放信号进行相位分布及幅值分布统计,提取表征局放特性的统计参数,总结了不同缺陷模型局放特征的区别。实际的检测结果表明,经过训练后的局放缺陷识别系统,能够有效地对各种缺陷的样本数据进行分类,达到良好的识别效果。 Partial discharge(PD) phenomenon happens at the early stage of insulation degradation in power apparatus.To classify the insulation defect according to the acquired PD signals,an adaptive neuro-fuzzy inference system(ANFIS) based on statistical parameters are introduced to the PD pattern recognition.The structure of ANFIS is modeled by fuzzy logic and trained by neural network.Four types of insulation defect models are designed and tested,and statistical parameters are extracted from the tested PD signals.The difference of statistical parameters among defect models is also summarized.The verification results show that the PD pattern recognition system can effectively classify different kinds of insulation defects and reach high recognition rate.
出处 《高压电器》 CAS CSCD 北大核心 2010年第9期56-60,共5页 High Voltage Apparatus
关键词 局部放电 绝缘缺陷 模式识别 自适应网络推理系统 统计参数 partial discharge insulation defect pattern recognition ANFIS statistical parameters
  • 相关文献

参考文献13

  • 1BARTNIKAS K Partial Diacharges.Their Mechanism,Detection and Measurement[J].IEEE Transactions on Dielectrics and Electrical Insulation,2002,9 (5):763-808.
  • 2STRACHAN S M,RUDD S,MCARTHUR S D J,et al.Knowledgebased Diagnosis of Partial Discharges in Power Transformers[J].IEEE Transactions on Dielectrics and Electrical Insulation,2008,15 (1):259-268.
  • 3MAZROUA A A,SALAMA M M A,BARTNIKAS R.PD Pattern Recognition with Neural Networks Using the Multilayer Parceptron Technique[J].IEEE Trans.on Electrical Insulation,1993,28(6):1 082-1 089.
  • 4CANDELA R,MIRELLI G,SCHIFANI R.PD Recognition by Means of Statistical and Fractal Parameters and a Neural Network[J].IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(1):87-94.
  • 5胡文堂,高胜友,余绍峰,谈克雄,高文胜.统计参数在变压器局部放电模式识别中的应用[J].高电压技术,2009,35(2):277-281. 被引量:52
  • 6HAO L,LEWIN P L,DODD S J.Comparison of Support Vector Machine Based Partial Discharge Identification Parameters[C] //Conference Record of the 2006 IEEE International Symposium on Electrical Insulation,2006:110-113.
  • 7SALAMA M M A,BARTNIKAS R.Fuzzy Logic Applied to PD Pattern Classification[J].IEEE Trans.on Dielectrics and Electrical Insulation,2000,7(1):118-123.
  • 8ABDEL-GALIL T K,SHARKAWY R M,SALAMA M M A,et al.Partial Discharge Pattern Classification using the Fuzzy Decision Tree Approach[J].IEEE Trans.on Instrumentation and Measurement,2005,54(6):2 258-2 263.
  • 9ZIOMEK W,REFORMAT M,KUFFEL E.Application of Genetic Algorithms to Pattern Recognition of Defects in GIS[J].IEEE Trans.on Dielectrics and Electrical Insulation,2000,7(2):161-168.
  • 10JANG J S R.ANFIS:Adaptive-Network-based Fuzzy Inference System[J].IEEE Trans.on Systems,Man and Cybernetics,1993,23(3):665-685.

二级参考文献32

共引文献61

同被引文献59

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部