期刊文献+

基于近似个体协同的进化子结构发现

Evolutionary Algorithm for Substructure Discovery Based on Approximate Individual Cooperation
下载PDF
导出
摘要 SUBDUE是一个主流的图数据挖掘算法。为克服其贪婪式查找易陷入局部极值的问题,将进化算法与爬山算法相结合并引入图数据挖掘,较好地权衡了算法的探查和利用能力。另外,针对图数据挖掘中普遍存在的实例易丢失的问题,采用了个体协同的查找方法,该方法与常见的种群间协同进化算法不同,可以使同一种群中的个体进行协同查找,重新找回丢失的实例。同时,还给出了一种具有多项式时间复杂度的近似图匹配算法以改善个体间协同的性能。实验结果表明,以上措施增强了算法的执行效率及寻优能力,能够获得更优的解。 SUBDUE is a representative graph-based data mining algorithm.To overcome the limit that the greedy search adopted by SUBDUE may often give sub-optimal solutions,a hybrid evolutionary algorithm,which balances the exploration and exploitation of search by combining the hill-climbing and EA,is developed to perform data mining on graphical databases.In addition,during the searching process,losing instances is common and vital to the algorithm performance.To address this issue,adopt the individual cooperation strategy which is greatly different from the common cooperatively evolutionary approach based on population cooperation.The new strategy enables individuals in the same population to search in a cooperative way and gets back the lost instances.At the same time,an approximate graph matching algorithm with polynomial time complexity is also proposed to improve the performance of the process of individual cooperation.Experimental results show that these measures successfully improve the efficiency and the searching capability of the algorithm and can get better results.
作者 常新功 李宏
出处 《计算机技术与发展》 2010年第9期106-110,114,共6页 Computer Technology and Development
基金 山西省自然科学基金项目(2010011022-1) 山西省高校科技研究开发项目(20081023)
关键词 进化算法 协同 图数据挖掘 子结构发现 近似图匹配 evolutionary algorithms cooperation graph-based data mining substructure discovery approximate graph matching
  • 相关文献

参考文献10

  • 1Inokuchi A,Washio T,Motoda H.An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data[C]//Proc.of the 4th European Conf.on Principles and Practice of Knowledge Discovery in Databases(PKDD).Lyon,France:Springer,2000:13-23.
  • 2Kuramochi M,Karypis G.Finding Frequent Patterns in A Large Sparse Graph[C]//Proc.of the 2004 SIAM Data Mining Conf..Lake Buena Vista,Florida,USA:Morgan Kaufmann,2004.
  • 3Yan Xi-feng,Han Jia wei.gSpan:Graph-based Substructure Pattern Mining[C]//Int.Conf.on Data Mining.Maebashi City,Japan:IEEE Computer Society,2002:721-724.
  • 4Huan J,Wang W,Prins J.Efficient Mining of Frequent Subgraph in the Presence of Isomorphism[C]//Third IEEE International Conference on Data Mining(ICDM 2003).[s.l.]:[s.n.],2003:549-552.
  • 5Grunwald P.A Tutorial Introduction to the Minimum Description Length Principle[EB/OL].2009-12-12.http://www.csee.wvu.edu/~natalias/ee568/grunwald04.pdf.
  • 6Cook D J,Holder L B.Graph-based data mining[J].IEEE Intelligent Systems,2000,15(2):32-41.
  • 7Yoshida K,Motoda H,Indurkhya N.Graph-based induction as a unified learning framework[J].Journal of Applied Intelligence,1994(4):297-328.
  • 8常新功,李敏强,寇纪淞.基于进化算法的图形数据模式发现[J].模式识别与人工智能,2008,21(1):116-121. 被引量:3
  • 9常新功,寇纪淞,李敏强.一种基于混杂EA的子结构发现算法[J].系统仿真学报,2008,20(6):1626-1629. 被引量:1
  • 10Bandyopadhyay S,Maulik U,Cook D J,et al.Enhancing structure discovery for data mining in graphical databases using evolutionary programming[C]//Proceedings of the Florida Artificial Intelligence Research Symposium.Pensacola Beach,Florida,USA:AAAI Press,2002:232-236.

二级参考文献20

  • 1马清亮,胡昌华,杨青.一种用于多目标优化的混合遗传算法[J].系统仿真学报,2004,16(5):1038-1040. 被引量:25
  • 2Inokuchi A, Washlo T, Motoda H, An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data Proc of the 4th European Conference on Principles and Practices of Knowl edge Discovery in Databases. Lyon,France, 2000, 13-23.
  • 3Kuramochi M, Karypis G An Efficient Algorithm for Discovering Frequent Subgraphs. IEEE Trans on Knowledge and Data' Engineering, 2004, 16(9) : 1038-1051.
  • 4Yan Xifeng, Han Jiawei. Gspan: Graph-Based Substructure Pattern Mining Proc of the IEEE International Conference on Data Mining. MaebashiCity, Japan, 2002:721-724.
  • 5Dehaspe L, Toivonen H. Discovery of Frequent Datalog Patterns. Data Mining and Knowledge Discovery, 1999, 3(1): 7-36
  • 6de Raedt L, Kramer S. The Levelwise Version Space Algorithm and Its Application to Molecular Fragment Finding Proc of the 17th International Joint Conferences on Artificial Intelligence. Seattle. USA, 2001 :853-862.
  • 7Cook D J, Holder I. B. Substructure Discovery Using Minimum Description Length and Background Knowledge. Journal of Artificial Intelligence Research, 1994, 1:231-255.
  • 8Jonyer I, Cook D J, Holder I. B. Graph-Based Hierarchical Conceptual Clustering. International Journal of Artificial Intelligence Tools, 2001, 10(1/2): 107-135.
  • 9Bandyopadhyay S, Maulik U, Cook D J, et al. Enhancing Structure Discovery for Data Mining in Graphical Databases Using Evolutionary Programming Proc of the 15th International Florida Artificial Intelligence Research Society Conference. Pensacola Beach, USA. 2002:232-236.
  • 10Grunwald P. A Tutorial Introduction to the Minimum Description Length Principle [EB/OL]. [2006-08-01]. http:// homepages.cwi. nl/pdg/ftp/mdlintro. pdf.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部