期刊文献+

基于单层感知器的数据挖掘分类的设计和实现 被引量:3

Design and Implementation of Classification Mining Based on Single-Layer Perceptron Artificial Neural Network
下载PDF
导出
摘要 数据挖掘是指从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是潜在有用信息。分类是数据挖掘重要研究方向之一,其目的就是分析输入数据,通过分析在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。怎样用科学合适的方式来解决分类问题,是数据挖掘研究领域的一个热点和难点。通过构造一种单层感知器神经网络的分类方法,对其进行设计分析和仿真实验,用图文并貌的界面形象直观地展示了分类效果,实验表明单层感知器神经网络可有效地进行数据挖掘分类。 Data mining is to extract the interested potential knowledge from the large database and data warehouse.Classification is one of the most important research directions of data mining,which aims to find an accurate description or model for each category by analyzing the characteristics of data in the training set.How to solve the problem of classification in a scientific way is a hot spot and difficulty in the field of data mining research.In this paper,propose a data mining classification method based on the single-layer perceptron neural network.Some simulation experiments are made to verify the effectiveness and the feasibility of the proposed methods,and the classification results are graphically displayed and demonstrate that the single-layer perceptron neural network can be used to solve the problem of classification data mining effectively.
出处 《计算机技术与发展》 2010年第9期111-114,共4页 Computer Technology and Development
基金 中国气象局公益性行业科研专项经费资助项目(GYHY200806017)
关键词 单层感知器 神经网络 分类 数据挖掘 single sensor neural network classification data mining
  • 相关文献

参考文献11

二级参考文献41

  • 1鄢洁,熊桂喜.基于遗传算法的商用车辆调度策略研究[J].计算机与现代化,2004(12):9-12. 被引量:3
  • 2巩帅.交通流量数据的分类规则挖掘[J].计算机工程与应用,2006,42(6):219-220. 被引量:6
  • 3罗静,李舟军.实时车载导航电子地图研究[J].计算机与现代化,2006(8):12-15. 被引量:2
  • 4彭龙军,吴啸,李晓军,韦东胜.空间数据挖掘在ITS中的研究进展[J].天津农学院学报,2007,14(1):55-59. 被引量:2
  • 5曾明哲 杜雪红.顾客化大生产产品的顾客设计[J].西北大学学报:自然科学版,1999,29(4):4-8.
  • 6[1]Carter, C.L., Hamilton, H.J. Efficient attribute-oriented algorithms for knowledge discovery from large databases. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2):193~208.
  • 7[2]Kukich, K. Techniques for automatically correcting words in text. ACM Computing Surveys, 1992,24(4):377~439.
  • 8[3]Tian, Zeng-ping, Lu, Hong-jun, Ji, Wen-yun, et al. An n-gram-based pproach for detecting approximately duplicate database records. International Journal on Igital Library, 2001,5(3):325~331.
  • 9[4]Agrawal, R., Srikant, R. Fast algorithms for mining association rules in large databases. In: Proceedings of the VLDB. 1994. 487~499.
  • 10[5]Yu, Fang, Jin, Wen. An effective approach to mining exeption class association rules. In: Proceedings of the Web-Age Information Management 2000. 2000. 145~150.

共引文献63

同被引文献28

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部