期刊文献+

三维Laplace方程柯西问题的磨光化求解方法 被引量:2

A Mollification Method for Cauchy Problem for 3-D Laplace Equation
下载PDF
导出
摘要 采用一种正则化方法——磨光化方法求解该问题,并通过理论分析和证明,得到了近似解与精确解之间的收敛性误差估计. To solve the problem numerically,a mollification method is considered in this paper.Error estimation between the exact solution and its approximation is obtained by the theoretical analysis and proof.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2010年第5期449-452,共4页 Journal of Henan University:Natural Science
基金 河南省教育厅自然科学基金项目(2009B110013)
关键词 不适定问题 Laplace方程Cauchy问题 磨光化方法 误差估计 ill-posed problem Cauchy problem of Laplace equation mollification method error estimate
  • 相关文献

参考文献7

  • 1Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer-Verlag, 1996.
  • 2Qian Z, Fu C L, Xiong X T. Fourth-order modified method for the Cauchy problem for the Laplace equation[J]. Comput. Appl. Math. , 2006, 192: 205-218.
  • 3Qian Zhi, Fu Chu Li, Li Zhen Ping. Two regularization methods for a Cauehy problem for the Laplace equation[J]. J. Math. Anal. Appl. , 2008, 338: 479-489.
  • 4Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems[R]. Washington: Winston and Sons, 1997.
  • 5Berntsson F, Eld'en L. Numerical solution of a Cauchy problem of Laplaceequation[J]. Inverse Probl. , 2001,17: 839-853.
  • 6Xiong X T, Fu C L. Central difference regularization method for the Cauehy problem of the Laplace's equation[J]. Appl. Math. Comput. , 2006,181: 675-684.
  • 7H'ao D N. A mollification method for ill posed problems[J]. Numer. Math. ,1994,68: 469-506.

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部