期刊文献+

低压透平叶片流动分离主动控制的数值研究 被引量:2

Numerical Study on Active Flow Separation Control for Low-Pressure Turbine Blade
下载PDF
导出
摘要 基于Langtry-Menter转捩模型的Menter SST两方程模型,通过数值求解了三维非定常雷诺时均Navier-Stokes方程,研究了雷诺数(Re)和来流湍流强度(IFSTI)对Pak-B低压透平叶片吸力面流动分离的影响.计算结果表明:该湍流模型能够较好地预测低压透平叶栅内流动特性,并能有效捕捉到叶片吸力面上流动分离和再附位置;随着Re和IFSTI的增大,叶片吸力面流动分离均有大幅度的减少.在Re和IFSTI较低的条件下,数值分析了涡流发生器(VGJ)对低压透平叶片表面流动分离的控制效果,结果表明:VGJ的引入能够有效抑制甚至消除低Re条件下叶片吸力面上的流动分离,减小总压损失和尾迹宽度.在VGJ流动控制中,存在着最佳吹气比,由此可获得最佳的流动控制效果.吹气比太小,不能有效抑制流动分离;吹气比太大,射流与主流掺混加剧,流动损失增加.当VGJ吹气比为2时,流动控制效果最佳,相对于无VGJ控制时的总压损失减少了45%. The three-dimensional viscous unsteady Reynolds-averaged Navier-Stokes equations were employed to investigate the effects of Reynolds numbers(Re)and freestream turbulence intensity(IFSTI)on the flow separation at the suction side of the Pak-B low-pressure turbine(LPT) blade on the basis of the Menter SST turbulence model coupled with the Langtry-Menter transition model.The numerical results indicate that the turbulence simulation can predict the flow characteristics inside the LPT cascade and capture the flow separation and reattachment location at the suction side of the blade effectively.The flow separation at the suction side of the blade decreases significantly with the increase in Re or IFSTI.The control effect of vortex generator jets(VGJs)on the flow separation at the suction side of the blade was numerically analyzed at the low Reand lowIFSTI.Applying VGJs can suppress the flow separation at the suction side of the blade and reduce the total pressure loss and wake width.There is an optimum blowing ratio(B)in the flow control by VGJs.The flow separation could not be suppressed effectively with a small Band the mixing loss of jet flow and main flow could rise with a large B.The total pressure loss decreases by 45%compared with that without the control by VGJs when Bof VGJs equals 2.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第9期21-26,共6页 Journal of Xi'an Jiaotong University
基金 陕西省自然科学基金资助项目(SJ08-ZT06)
关键词 流动分离控制 涡流发生器 低压透平叶片 数值模拟 flow separation control vortex generator jets low pressure turbine blade numerical simulation
  • 相关文献

参考文献9

  • 1BONS J P, SONDERGAARD R, RIVIR R B. Control of low-pressure turbine separation using vortex generator jets, AIAA 99-0367 [R]. Reston, VA, USA: AIAA, 1999.
  • 2BONS J P, SONDERGAARD R, RIVIR R B. Turbine separation control using pulsed vortex generator jets [J]. ASME Journal of Turbomachinery, 2001, 123 (2) : 198-206.
  • 3LIU X M, NISHI M. Improvement of diffuser performance by using vortex generator jets with different scheme of velocity ratio[C]//Proceedings of 2003 Meeting of Japan Society of Fluid Mechanics. Tokyo, Japan: Japan Society of Fluid Mechanics, 2003: 408- 409.
  • 4伊进宝,乔渭阳.低雷诺数下涡轮叶栅流动分离实验与数值模拟[J].推进技术,2008,29(2):208-213. 被引量:9
  • 5POSTL D, GROSS A, FASEL H F. Numerical investigation of low-pressure turbine blade separation con- trol, A1AA 2003 - 0614[R]. Reston, VA, USA: AIAA, 2003.
  • 6RIZZETTA D P, VISBAL M R. Numerical simulation of separation control for a transitional highly-loaded low-pressure turbine [J].AIAA Journal, 2005, 4a (9):1958-1967.
  • 7MENTER F R, LANGTRY R B. A correlation-based transition model using local variables, part I : model formulation, ASME-GT 2004-53452 [R]. New York, NY, USA: ASME, 2004.
  • 8LANGTRY R B, MENTER F R. A correlation-based transition model using local variables, part Ⅱ: test cases and industry applications, ASME-GT 2004- 53454[R]. New York, NY, USA: ASME, 2004.
  • 9HUANGJ, CORKETC, THOMAS F O. Plasma actuators for separation control of low-pressure turbine blades, AIAA 2003-1027 [R]. Reston, VA, USA: AIAA, 2003.

二级参考文献10

  • 1Sharma O. Impact of Reynolds number on LP turbine performance [R]. NASA CP-1998-206958.
  • 2Lake J, King P, Rivir R. Reduction of separation losses on a turbine blade with low Reynolds number [R]. AIAA 99-0242.
  • 3Murawski C G, Simon T W, Volino R J. Experimental study of the unsteady aerodynamics in a linear cascade with low Reynolds number low pressure turbine blades [R]. ASME 97-GT-95.
  • 4Qiu s, Simon T W. An experimental investigation of tra sition as applied to low pressure turbine suction surfa flows [R]. ASME 97-GT-d55.
  • 5Simon T W, Volino R J. Separating and separated boundary layers [ R ]. Technical Report, Wright Laboratory, WL- TR-96 -2092.
  • 6Volino R J. Separated flow transition under simulated low- pressure turbine airfoil conditions: Part 1-mean flow and turbulence statistics [R]. ASME-GT 2002-30236.
  • 7Langtry R B, Sjolander S A. Prediction of transition for attached and separated shear layers in turbomachinery [R]. AIAA 2002-3643.
  • 8Van Driest E R, Blumer C B. Boundary layer transition: freestream turbulence and pressure gradient effects [ J]. AIAA Journal, 1963, 1(6): 1303-1306.
  • 9Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [ J ]. AIAA Journal, 1994, 32(8) : 1598-1605.
  • 10Wilcox D C. Simulation of transition with a two equation turbulence model [J]. AIAA Journal, 1994, 32(2) : 247 - 255.

共引文献8

同被引文献17

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部