期刊文献+

集值映射g(x)+Ω(x)切锥、法锥表示及calmness充分条件 被引量:4

Expressions of tangent and normal cones for multifunction g(x) + Ω(x) and a sufficient condition for calmness
原文传递
导出
摘要 给出一般集值映射M-1(.)=g(.)+Ω(.)的Clarke切锥、法锥及Bouligand切锥通过Ω(.)的相应切锥及法锥的表达式,讨论M-1的subsmooth及L-subsmooth性.最后利用它们给出集值映射M在给定点(y珋,x珋)处是calm的一个充分条件. Clarke tangent cone,normal cone and Bouligand cone for Multifunction M-1(.) = g(.) + Ω(.) are obtained in forms of corresponding objects for Ω(.) and its subsmooth and L-subsmooth properties are discussed.Finally,by these results,a sufficient condition for M to be calm at(y,x) is obtained.
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期503-509,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10761012) 云南大学校级重点基金资助项目(2007Z005C) 云南省教育厅重点基金项目资助(08Z0002)
关键词 Clarke切锥 Clarke法锥 相依锥 L-subsmooth CALM Clarke tangent cone Clarke normal cone contingent cone L-subsmooth calm
  • 相关文献

参考文献15

  • 1HENRION R, OUTRATA J. Calmness of constraint systems with applications[ J]. J Math Program ,2005,104:437-464.
  • 2HENRION R, JOURANI A, OUTRATA J. On the calmness of a class of multifunctions [ J ]. SIAM J Optim ,2002,13 (2) :603- 618.
  • 3ZHENG Xi-yin,NG Kun-fu. Calmness for L- subsmooth multifunctions in banach spaces [ J ]. SIAM J Optim,2009,19 (4) : 1 648-1 673.
  • 4ZHENG Xi-yin, YANG Xiao-qi. Weak sharp minima for semi - infinite optimization problems with applications [ J ]. SIAM J Optim, 2007,18 ( 2 ) : 573-588.
  • 5ZHENG Xi-yin, NG Kun-fu. Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces[ J]. SIAM J Optim ,2007,18 (2) :437-460.
  • 6ZHENG Xi-yin, NG Kun-fu. Metric regularity and constraint qualifications for convex inequalities on Banach spaces [ J ]. SIAM J Optim, 2004,14 ( 3 ) : 757-772.
  • 7POLIQUIN R A, ROCKAFELLAR R T, THIBOULT L. Local differentiability of distance Functions [ J ]. Trans Amer Math Soc, 2000,352( 11 ) :5 231-5 249.
  • 8AUSSEL D, DANILIDIS A,THIBOULT L. Subsmooth sets:functional characterizations and related concepts [ J ]. Trans Amer Math Soc ,2004,357 (4) :1 275-1 301.
  • 9NG Kun-fu, ZHENG Xi-yin. Characterizations of error bounds for convex multifunctions on Banach spaces [ J ]. Math Oper Res ,2004,29 ( 1 ) :45-63.
  • 10MORDUKHOVICH B S, SHAO Y. Nonsmooth sequential analysis in Asplund space [ J ]. Trans Amer Math Soc, 1996,348 (4) :1 235-1 280.

同被引文献20

  • 1IOFFE A D, OUTRATA J V. On metric and clamness qualification conditions in subdifferential calculus [ J]. Set -Valued Anal, 2008,16 (2) :199 -227.
  • 2POLIQU1N R A,ROCKAFELLAR R T, THIBOULT L. Local differentiability of distance functions [ J]. Trans Amer Math Soc, 2000,352( 11 ) :5231 -5249.
  • 3ZHENG Xi-yin, NG Kun-fu. Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces [J]. SIAM J Optim, 2007, 18( 2): 437 -460.
  • 4MORDUKHOVICH B S, SHAO Y. Nonsmooth sequential analysis in asplund space [J]. Trans Amer Math Soc, 1996,348 (4) : 1235 - 1280.
  • 5ZHENG Xi-yin, NG Kun-fu. Calmness for L- subsmooth multifunctions in banach spaces [J]. SIAM J Optim, 2009,19 (4) : 1648 - 1673.
  • 6ZHENG Xi-yin, NG Kun-fu. Linear regularity for a collection of suhsmooth sets in banach spaces [ J ]. SIAM J Optim, 2008, 19 ( 1 ) :62 -76.
  • 7CLARKE F H. Optimization and nonsmooth analysis [ M]. New York: Wiley, 1983:95 -109.
  • 8MORDUKHOVICH B S. Variational analysis and generalized differentiation I , II : basic theory [ M ]. New York : Springer - Verlag, 2006 : 195 - 223.
  • 9Clarke,F.H.Optimization and Nonsmooth Analysis,1983.
  • 10Ioffe A D;Outrata J V.On metric and clamness qualification conditions in subdifferential calculus,2008(02).

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部