期刊文献+

酵母基因启动子序列结构与转录频率的关联性分析 被引量:1

Analysis of correlation between promoter sequence structures and transcriptional frequencies in yeast genes
原文传递
导出
摘要 分别基于Markov链模型、频率分析和加权Markov链模型分析k-mer(主要考虑k=6的情形)在DNA序列中的使用情况,并以此定义模糊相对熵度量2个DNA序列结构的差异程度.将转录频率较低的启动子序列作为对照,分析其它转录频率不同的酵母基因启动子序列与对照序列中k-mer隶属度的模糊相对熵的变化,发现基因转录频率与模糊相对熵存在线性正相关关系.一般地,转录频率相差越大的基因,其启动子序列结构的差异越明显.这提示酵母基因启动子序列结构与基因转录频率有一定关联性.与Markov链模型和频率分析法比较,加权Markov链模型的模糊相对熵能更有效地度量基因启动子序列结构的差异. The usages of k-mer(mainly k = 6) were analyzed based on Markov chain model,k-mer occurrence frequencies and weighted Markov chain model respectively,and a fuzzy relative entropy was defined to measure the difference between the structures of two DNA sequences.The lowly-transcribed gene promoters were taken as a control set,the fuzzy relative entropies of other promoters of the genes with higher transcriptional frequencies were calculated.It was found that there was a linear positive correlation between the fuzzy relative entropies and transcription frequencies.In general,the more different between the transcriptional frequencies of two genes,the more different between their sequences structures of the promoters.This result suggested that there existed a certain correlation between the sequences structures of promoters and the transcriptional frequencies in yeast genes.Compared with the fuzzy relative entropy under Markov chain model or k-mer occurrence frequency,the fuzzy relative entropy under weighted Markov chain model could measure the difference of gene promoter sequence structures more effectively.This showed that the weighted Markov chain model,especially 4-order model,could better characterize the sequence organizations of yeast gene promoters.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期594-600,607,共8页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(30360027) 云南省应用基础研究基金资助项目(2007A023M)
关键词 酵母基因 启动子 转录频率 加权Markov链模型 模糊相对熵 yeast gene promoter transcriptional frequency weighted Markov chain model fuzzy relative entropy
  • 相关文献

参考文献14

  • 1荀靓,张利,甄一松,惠汝太.基于PWM扫描算法的启动子区域统计分析[J].清华大学学报(自然科学版),2006,46(7):1267-1270. 被引量:3
  • 2WRAY G A, HAHN M W, ABOUHEIF E, et al. The evolution of transcriptional regulation in eukaryotes [ J ]. Mol Biol Evol, 2003,20(9) :1 377-1 419.
  • 3WESTHOLM J O, XU F, RONNE H, et al. Genome - scale study of the importance of binding site context for transcription factor binding and gene regulation[ J]. BMC Bioinformatics ,2008 (9) :484-498.
  • 4王秀荷,张静.酵母基因上游序列中潜在的转录正调控位点分析[J].生物化学与生物物理进展,2005,32(10):953-958. 被引量:6
  • 5DAI Q,YANG Y C, WANG T M, et al. Markov model plus k - word distribution: a synergy that produces novel statistical measures for sequence comparison [ J ]. Bioinformatics ,2008 ( 20 ) :2 296-2 302.
  • 6VAN H J. Metrics for comparing regulatory sequences on the basis of pattern counts [ J ]. Bioinformatics, 2004 (20) : 399- 406.
  • 7KANTOROVITZ M R, ROBINSON G E, SINHA S, et al. A statistical method for alignment - free comparison of regulatory se- quences [ J ]. Bioinformatics ,2007 < 23 ) :249-255.
  • 8ZHU J, ZHANG M Q. SCPD:a promoter database of the yeast Saccharomyces cerevisiae [ J ]. Bioinformatics, 1999 (15) :607- 611.
  • 9VAN HELDEN J, ANDRE B, COLLADO - VIDES J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies [ J ]. J Mol Biol, 1998,281 (5) : 827-842.
  • 10SINHA S,TOMPA M. Discovery of novel transcription factor binding sites by statistical overrepresentation[ J ]. Nucleic Acids Res,2002,30 (24) :5 549-5 560.

二级参考文献22

  • 1Zhang J, Hu J, Shi X F, et al. Detection of potential positive regulatory motifs of transcription in yeast by comparative analysis of oligonucleotide frequencies. Comput Biol Chem, 2003, 27(4 ~5):497~506
  • 2van Helden J, Andre B, Collado-Vides J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis ofoligonucleotide frequencies. J Mol Biol, 1998, 281 (5): 827~842
  • 3Lieb J D, Liu X L, Botstein D, et al. Promoter-specific binding of Rapl revealed by genome-wide maps of protein-DNA association.Nature Genetics, 2001, 28 (4): 327~334
  • 4Mencía M, Moqtaderi Z, Gelsberg J V, et al. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell, 2002, 9 (4): 823~833
  • 5Yu Q, Qiu R, Foland T B, et al. Rap1p and other transcriptional regulators can function in defining distinct domains of gene expression. Nucleic Acids Res, 2003, 31 (4): 1224~1233
  • 6Himes R, Tagoh H, Goonetilleke N, et al. A highly conserved intronic element in the c-fms (M-CSF receptor) gene comtrols macrophage-specific and regulated expression. J Leukocyte Biol,2001, 70 (5): 812~820
  • 7Wingender E, Chen X, Fricke E, et al. The TRANSFAC system on gene expression regulation. Nucl Acids Res, 2001, 29 (1): 281 ~283
  • 8Vignais M L, Huet J, Buhler J M, et al. Contacts between the factor TUF and RPG sequences. J Biol Chem, 1990, 265(24):14669 ~14674
  • 9KULLBUCK S. Information Theory and Statistics [ M ]. New York : Wiley, 1959.
  • 10LIN J. Divergence measures based on the Shannon entroPY[J].IEEE Trans Information Theory, 1991,37 ( 1 ) :145-151.

共引文献9

同被引文献20

  • 1BAILE T L, ELKAN C. Unsupervised learning of muhiple motifs in biopolymer using expectation maximization [ J ]. Mach Learn, 1995, 21:51 -80.
  • 2FAUTEUX F, BLANCHETYE M, STROMVIK M V. Seed- er: discriminative seeding DNA motif discovery [ J ]. Bioinformatics, 2008, 24(20): 2303 - 2307.
  • 3TOMPA M, LI N, BAILEY T L, et al. Assessing compu- tational tools for the discovery of transcription factor bind- ing sites [J]. Nat Biotechnol, 2005, 23(1) : 137 - 144.
  • 4HOLLANDER M, WOLFE D A. Nonparametric statistical methods [ M]. New York:J Wiley, 1999.
  • 5SCHBATH S. An effieent statistic to detect over and under -presented words in DNA sequences [ J ]. J Comp Biol, 1997, 4(2) :189 - 192.
  • 6REMENYI A, SCHOLER H R, WILMANNS M. Combina- torial control of gene expression [ J ]. Nat Struct Mol Biol, 2004, 11(9) :812 -815.
  • 7NAKAO A, YOSHIHAMA M, KENMOCHI N. RPG: the ribosomal protein gene database [ J ]. Nucleic Acids Res, 2004, 32(Database issue): D168- D170.
  • 8FREITAS A T, OLIVEIRA A L, Sa- CORREIA I. The YEASTRACT database: a tool for the analysis of tran- scription regulatory associations in Saccharomyces cerevi- siae [ J ]. Nucl Acids Res, 2006 (34) : D446 - D451.
  • 9VAN HELDEN J, RIOS A F, COLLADO-VIDES J. Dis- covering regulatory elements in noncoding sequences by spaced dyads E J 1- Nucleic Acids Res, 2000, 28 ( 8 ) : 1808 - 1818.
  • 10MATYS V, FRICKE E, GEFFERS R, et al. TRANS- FAC: transcriptional regulation, from patterns to profiles [ J]. Nucleic Acids Res, 2003, 31( 1 ) : 374 - 378.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部