期刊文献+

基于NSCT和SQI的光照不变量及人脸识别 被引量:8

Illumination Invariant and Face Recognition Based on NSCT and SQI
下载PDF
导出
摘要 为了消除光照变化对人脸识别的影响,提出了一种结合无下采样轮廓波变换(Nonsub-sampled contourlet transform,NSCT)和自商图像(Self-quotient image,SQI))的光照不变量提取算法。该算法首先对图像进行伽玛校正,一定程度上减弱了不同光照条件的影响,然后使用NSCT对伽玛校正后图像进行多尺度多方向分析,使用自适应NormalShrink方法对各高频子带进行滤波,通过反无下采样轮廓波变换得到平滑图像,最后利用SQI提取光照不变量。在YaleB与CMUPIE人脸库上的实验结果表明:所提出的算法能够有效消除光照变化对人脸识别的影响,识别率高于多尺度Retinex(Multiscale Retinex,MSR)、SQI和对数全变差(Logarithmic totalvariation,LTV)等方法。 In order to eliminate the effect of varying illumination on face recognition,a novel illumination invariant method based on nonsubsampled contourlet transform(NSCT) and self-quotient image(SQI) is proposed.The method first performs Gamma correction on image under various lighting conditions,which can decrease the effect of varying illumination to some extent.The NSCT is used for multiresolution analysis.NormalShrink filtering is applied to high frequency subbands and a smooth image can be obtained by inverse nonsubsampled contourlet transform.A self-quotient image is used for illumination invariant extraction.Experimental results from Yale B and CMU PIE databases show that the proposed method can effectively eliminate the effect of varying illumination on face recognition,and the recognition rate of the method here is higher than the multiscale Retinex,self-quotient image and logarithmic total variation methods.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2010年第4期425-430,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金重点项目(90820306 60632050) 先进数控技术江苏省重点建设实验室开发项目(KXJ07117)
关键词 人脸识别 无下采样轮廓波变换 自商图像 光照不变量 face recognition nonsubsampled contourlet transform self-quotient images illumination invariant
  • 相关文献

参考文献18

  • 1Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces : a survey [ J ]. Proceedings of the IEEE, 1995, 83(5): 705-740.
  • 2Bowyer K W, Chang K, Flynn P J. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition [ J ]. Computer Vision and Image Understanding, 2006, 101 (1) : 1 - 15.
  • 3Shall Shiguang, Gao Wen, Cao Bo, et al. Illumination normalization for robust face recognition against varying illumination conditions [ A ]. Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition[ C ]. Washington DC, USA : IEEE Computer Society, 2003:157 - 164.
  • 4Pizer S M, Amburn E P, Austin J D, et al. Adaptive histogram equalization and its variations [ J ]. Computer Vision, Graphics, and Image Processing, 1987, 39(3) : 355 -368.
  • 5Xie Xudong, Lam K M. Face recognition under varying illumination based on a 2D face shape model [ J ]. Pattern Recognition, 2005, 38 (2) : 221 - 230.
  • 6Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660.
  • 7Basri R, Jacobs D W. Lambertian reflectance and linear subspaces [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 25(2): 218-233.
  • 8Jobson D J, Rahman Z, Woodell G A. A muhiscale Retinex for bridging the gap between color images and the human observation of scenes [ J ]. IEEE Transac- tions on Image Processing, 1997, 6(7) : 965 -976.
  • 9Wang Haitao, Li S Z, Wang Yangsheng. Face recognition under varying lighting conditions using self quotient image [ A ]. Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition [ C ]. Seoul, Korea: IEEE Computer Society, 2004:819-824.
  • 10王海涛,刘俊,王阳生.自商图像[J].计算机工程,2005,31(18):178-179. 被引量:10

二级参考文献5

  • 1Epstein R, Yuille A L, Bellumeur P N. Learning Object Reorie-ntations form Lighting Variation. In Object Rep. in Computer Vision 2, Springer-verlag, 1996:179-199
  • 2Sim T, Baker S, Bsat M. The CMU Pose, Illumination, and Expression (PIE)Database. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition,2002-05
  • 3Jobson D J, Rahman Z, Woodell G A. Properties and Performance of a Center/Surround Retinex. IEEE Transactions on Image Processing, 1997, 6(3):451-462
  • 4Jobson D J, Rahman Z, Woodell G A. A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes. IEEE Transactions on Image Processing, 1997,6(7): 965-976
  • 5Gross R,Brajovie V. An Image Preprocessing Algorithm for Illumination Invariant Face Recognitoin. In: 4^th International Conference on Audio and Video Based Biometric Person Authentication,2003: 10-18

共引文献9

同被引文献69

  • 1杨章静,刘传才,顾兴健,朱俊.依概率分类的保持投影及其在人脸识别中的应用[J].南京理工大学学报,2013,37(1):7-11. 被引量:6
  • 2苏从勇,庄越挺,黄丽,吴飞.基于正交图像生成人脸模型的合成分析方法[J].浙江大学学报(工学版),2005,39(2):175-179. 被引量:11
  • 3江巨浪,张佑生,薛峰,胡敏.保持图像亮度的局部直方图均衡算法[J].电子学报,2006,34(5):861-866. 被引量:64
  • 4Jobson D J, Rahman Z, Woodell G A.A multiscale Retinex for bridging the gap between color images and tile human observation of scenes[J].IEEE Transactions on Image Pro- cessing, 1997,6( 7 ) : 965-976.
  • 5Wang Haitao, Li S Z, Wang Yangsheng, et al.Self quotient image for face recognition[C]//International Conference on Image Processing.Seoul, Korea: [s.n.], 2004: 1397-1400.
  • 6Chen T, Yin Wotao, Zhou Xiangsean, et al.Total variation models for variable lighting face recognition[J].IEEE Trans- actions on Pattern Analysis and Machine Intelligence,2006, 28(9) : 1519-1524.
  • 7Cheng Yong,Hou Yingkun, Zhao Chunxia, et al.Robust face recognition based on illumination invariant in nonsubsam- pled Contourlet transform domain[J].Neurocomputing, 2010, 73(10) :2217-2224.
  • 8Jobson D J,Rahman Z,Woodell G A.Properties and perfor- mance of a center/surround Retinex[J].lEEE Transactions on Image Processing, 1997,6(3) :451-462.
  • 9Kimmel R, Elad M, Sobel I.A variational framework for Retinex[J].International Journal of Computer Vision, 2003, 52(1):7-23.
  • 10Emmanuel C, Laurent D, David D.Fast discrete curvelet transforms[J].Multiscale Modeling & Simulation, 2006, 5: 1-43.

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部