期刊文献+

一种改进的求解多目标优化问题的进化算法 被引量:5

Improved Evolutionary Algorithm for Multi-objective Optimization Problems
下载PDF
导出
摘要 针对多目标优化问题,传统进化算法维护种群多样性的方法主要依赖于共享函数,但其小生境半径难以进行有效地设置。该文提出一种改进的求解多目标优化问题的进化算法,新算法引入了近邻函数准则(NFC),将其用于选择过程,可以从种群中选择出较好的个体,并确保种群的多样性。此外,新算法中融入了一种基于近邻函数准则的Pareto候选集的维护方法,利用这种方法可以有效地维护候选解集中个体的多样性。对所提出的算法,从时间和空间复杂度进行了理论分析。对一组典型优化问题的测试表明:该文提出的算法具有较高的搜索性能,解集分布的多样性与收敛性均较理想。 In multi-objective optimization problems,traditional mechanisms of ensuring diversity in a population rely on sharing function.However,the main problem with sharing is that it requires the specification of a sharing parameter.This paper proposes an improved evolutionary algorithm for multi-objective optimization problems and introduces the neighborhood function criterion(NFC) which is applied to selection process.By using this criterion,good individuals can be distinguished from the population and ensure the diversity of the population.On the other hand,the preservation method for Pareto candidate solution set based on NFC is incorporated into the proposed algorithm.This method can maintain the diversity of Pareto candidate set effectively.The complexity of time and space in the proposed algorithm is analysed.For a set of benchmark problems,the experimental results show that the proposed algorithm can search more effectively and provide good performance both in convergence and in diversity of solutions.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2010年第4期464-469,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60472060) 浙江大学CAD&CG国家重点实验室开放课题基金资助项目((A0704))
关键词 多目标优化 进化算法 PARETO最优解 近邻函数 multi-objective optimization evolutionary algorithms Pareto optimal solutions neighborhood function
  • 相关文献

参考文献6

  • 1Srinivas N, Deb K. Muhiobjective optimization using nondominated sorting in genetic algorithms [ J ]. Evolutionary Computation, 1994, 2(3) : 221 -248.
  • 2Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for muhiobjective optimization [ A ]. Proc of the 1 st IEEE Conf on Evolutionary Computation[C]. Piscataway: IEEE World Congress on Computational Computation, 1994 : 82 - 87.
  • 3Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I : An unified formulation [ J ]. IEEE Trans on Systems, Man, and Cybernetics, 1998, 28(1) : 26 -37.
  • 4Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (9) : 257 - 271.
  • 5Deb K, Agrawal S, Pratap A, et al. A fast and elitist muhiobjective genetic algorithm : NSGA - II [ J ]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 - 197.
  • 6Gil C, Marquez A, Banos R, et al. A hybrid method for solving multi-objective global optimization problems [ J ]. Journal of Global Optimization, 2007, 38(2) : 265 -281.

同被引文献46

  • 1孙红光,潘毓学.基于运动目标路径的粒子群优化算法研究[J].仪器仪表学报,2004,25(z1):946-947. 被引量:3
  • 2吕新福,蔡临宁,曲志伟.废弃物回收物流中的选址-路径问题[J].系统工程理论与实践,2005,25(5):89-94. 被引量:44
  • 3肖建明,陈国华,张瑞华.高斯烟羽模型扩散面积的算法研究[J].计算机与应用化学,2006,23(6):559-564. 被引量:28
  • 4卢旺明,王明武.线性多自由度系统中动力吸振器的优化研究[J].噪声与振动控制,1996,16(6):13-15. 被引量:1
  • 5Zitzler E K,Deb,Thiele L.Comparison of multi-objective evolutionary algorithms:Empirical results[J].Evolutionary Computation,2000,8(2):173-195.
  • 6Deb K,Pratap A,Agarwal S,Meyarivan T.A fast and e-litist multi-objective genetic algorithms:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6:182-197.
  • 7Zhang Z,Hidajat K,Ray A K,et al.Multiobjective op-timization of SMB and varicol process for chiral separa-tion[J].Journal of American Institute of Chemical En-gineers,2002,48:2800-2816.
  • 8Kennedy J,Eberhart R.Particle swarm optimization[A].Proceeding of IEEE International Conference onNeural Networks[C].Perth,1995:1942-1948.
  • 9Huang V L,Suganthan P N,Liang J J.Comprehensivelearning particle swarm optimizer for solving multiob-jective optimization problems[J].International Journalof Intelligent Systems,2006,21:209-226.
  • 10Mazzotti M,Stori G,Morbidelli M.Optimal operation ofsimulated moving bed units for nonlinear chromatographicseparations[J].Journal of Chromatography A,1997(1):3-24.

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部