期刊文献+

基于模糊综合评判的道路交通状态分析模型 被引量:28

A Model for Road Traffic State Analysis Based on Fuzzy Comprehensive Evaluation
原文传递
导出
摘要 结合交通流本身的特点,选择对交通状态变化反应灵敏,容易获取,且准确率较高的参数作为判别道路交通状态的指标。综合考虑各种情况,选取交叉口进口道最大相位饱和度、进口道平均最大排队长度比和路段平均车速为特征参数,设计了一种基于模糊综合评判的道路交通状态分析模型,并用VISSM4.20对以上方法进行了模拟验证。试验结果表明,单个的特征参数得到的交通状态判别结果波动性较大,准确性不足。通过将其进行模糊综合评判后,判别结果有了较好的稳定性和准确度,所提出的算法能够提高交通状态实时判别的效果。 Combined the characteristics of traffic flow, the parameters which have sensitive response and high accuracy to traffic state changes were selected as the indicators to discriminate road traffic condition. Considering all the circumstances, maximum phase saturation of intersection approach, ratio of the average maximum queue length at approach and average vehicle speed were selected as the characteristic parameters. A model for road traffic state analysis based on fuzzy comprehensive evaluation was designed, and the abovementioned methods were simulated via validation with VISSM4.20. The experimental result shows that the traffic state discrimination result from a single parameter is volatile and inaccurate. The discrimination result has good stability and accuracy after fuzzy comprehensive evaluation, and the proposed algorithm can enhance the effect of discriminating the real-time traffic status.
出处 《公路交通科技》 CAS CSCD 北大核心 2010年第9期121-126,共6页 Journal of Highway and Transportation Research and Development
基金 国家高技术研究发展计划(八六三计划)资助项目(2009AA11Z218)
关键词 交通工程 交通状态分析模型 模糊综合评判 饱和度 排队长度比 平均车速 traffic engineering traffic analysis model fuzzy comprehensive evaluation saturation ratio of queue length average vehicle speed
  • 相关文献

参考文献6

二级参考文献10

  • 1Jiuyi Hua, Ardeshir Faghri. Dynamic Traffic Pattern Classification Using Artificial Neural Networks [R] .Transportation research Record 1399:14-19.
  • 2Adel W Sadek, Michael J Demetsky, Brain L Smith. Case-Basd Reasoning for Real-Time Traffic Flow Wanagement [J] .Computer-Aided Civil and Infrastructure Engineering, 1999, 14: 347-356.
  • 3Attor Sanju Nair,Jyh-Charn Liu,Laurence Rilett,Saurabh Gupta.Non-Linear Analysis of Traffic Flow.2001 IEEE Intelligent Transportation Systerns Conference Proceedings, 2001: 683- 687.
  • 4Hojjat Adeli, Asim Karim.Fuzzy-Wavelet RBFNN Model for Freeway Incident Detection [J] .Journal of Transportation Engineering, 2000:464-471.
  • 5Karlene A Kosanovich, Michael J Piovoso.PCA of Wavelet Transformed Process Data for Monitoring[J] .Intelligent Data Analysis, 1997 (1) :85-99.
  • 6Vladimir N Vapnik.Statistical Learning Theory [M] .New Yolk: Wiley, 1988.
  • 7Vladimir N Vapnik.The Nature of Statistical Learning Theory [M] .New York: Springer, 1995.
  • 8PARAMICS Use, Guide-Version 3.0.U.K.Quadstone Limited[R] .Edinburgh, 1999.
  • 9徐凌宇,杜庆东,赵海.嵌入式水电事故预测系统中信息融合的方法[J].东北大学学报(自然科学版),2000,21(1):8-11. 被引量:21
  • 10杜庆东,徐凌宇,赵海.基于分布式结构的判决反馈数据融合算法[J].东北大学学报(自然科学版),2001,22(4):385-388. 被引量:9

共引文献128

同被引文献232

引证文献28

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部