期刊文献+

交换环上Rao正则矩阵的广义Cramer法则 被引量:1

The Generalized Cramer' Ruler of Rao Regular Matrix over Commutative Rings
下载PDF
导出
摘要 Gong Z,Aldeen M和Elsner L在[A note on a generalized Cramer’s rule,Linear AlgebraApp.,2002,340:253-254]中给出结论:对任意的k,α∈Qk,n,β∈Qk,m有|Xα,β|=|A-1|AYαβ,其中A∈n×n可逆矩阵,AX=Y.本文给出交换环上Rao正则矩阵的广义Cramer法则. Gong Z,Aldeen M and Elsner L in [A note on a generalized Cramer's rule,Linear Algebra App.,2002,340: 253-254] given the result: for any k,α∈Qk,n,β∈Qk,m,|Xα,β|=|A-1|AYβ^α,where An×n is a nonsingular matrix over field r(A)=n and AX=Y.In this paper,the generalized Cramer' ruler of Rao regular matrix over communicate rings was given.
出处 《大学数学》 2010年第3期56-59,共4页 College Mathematics
基金 广西科学基金资助项目(0640016) 安徽省高等学校优秀青年人才基金(2009SQRZ163ZD)
关键词 CRAMER法则 交换环 Rao正则矩阵 Cramer' ruler commutative ring Rao regular matrix
  • 相关文献

参考文献6

  • 1Bhaskara Rao K P S.The theory of generalized inverse over commutative rings[M].USA:Taylor & Francis,2002.
  • 2Robinson D W.The classical adjoint[J].Linear Algebra Appl.,2005,411(1):254-276.
  • 3Gong Z,Aldeen M,Elsner L.A note on a generalized Cramer's rule[J].Linear Algebra App.,2002,340(1):253-254.
  • 4Wang G.,Wei Y,Qiao S.Generalized inverses:theory and computations[M].Beijing:Science Press,2004.
  • 5Stanimirovic P,Stankovic M.Determinantal representation of weighted Moore-Penrose inverse[J].Matematicki Vesnik,1994,46(1-2):41-50.
  • 6Ben Israel A,Greville T N E.Generalized inverses:theory and applications (sencon ed.)[M].New York:Springer-Verlag,2003.

同被引文献13

  • 1陈永林.约束线性方程组Ax=b(x∈T)的唯一解的Cramer法则[J].南京师大学报(自然科学版),1993,16(2):3-9. 被引量:5
  • 2同济大学数学教研室.工程数学:线性代数[M]北京:高等教育出版社,199929-30.
  • 3s.M.Robinson. A short proof of Cramer’s rule[J].Math Magazine,1970,(43):94-95.
  • 4陈永林.广义逆矩阵的理论与方法[M]南京:南京师范大学出版社,2005202-226.
  • 5A.Ben-Israel. A Cramer rule for least-florin solutions of consistent linear equations[J].Linear Algebra and its Applications,1982.223-226.
  • 6A.Ben-Israel. A Cramer rule for least-norm solutions of consistent linear equations[J].Linear Algebra and its Applications,1982.223-226.
  • 7H.J.Werner. On extensions of Cramer 9s rule for solutions of restricted linear systems[J].LiBear and Muhilinear Algebra,1984.319-330.
  • 8G.R.Wang. A Craner rule for minimum-norm(T) least squares(S) solution of inconsistent linear equations[J].Linear Algebra and its Applications,1986.213-218.
  • 9G.M.Diaz-Toca,L.Gonzalez-Vega,H.Lombardi. Generalizing Cramer’s rule:solving uniformly linear systems of equations[J].SIAM Journal on Matrix Analysis and Applications,2005.621-637.
  • 10J.Ji. A condensed Cramer’s rule for the minimum-norm least-squares solution of linear equations[J].Linear Algebra and its Applications,2012.2173-2178.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部