摘要
在时间测度上研究一类具有时滞和Beddington-DeAngelis功能性反应的n种群食物链系统.利用Mawhin重合度理论建立了这一类系统的正周期解存在的充分性条件,从而使这一类系统的连续时间和离散时间情形即微分方程和差分方程得到了统一研究.
A class of nonlinear periodic n-species food-chain system with Beddington-DeAngelis functional response and time delays is studied on time scales.By using the continuation theorem based on coincidence degree theory,sufficient criterion are established for the existence of positive periodic solutions of the class systems,which has been unified and extensively applied in studying existence problems of these population models in differential equations and difference equations.
出处
《大学数学》
2010年第3期88-92,共5页
College Mathematics
基金
黑龙江省教育厅科学技术研究项目(11553058)