期刊文献+

二阶非线性摄动微分方程解的振动性质 被引量:1

Oscillatory Property of Solutions for a Class of Second Order Nonlinear Differential Equation with Perturbation
下载PDF
导出
摘要 研究了一类二阶非线性摄动微分方程解的振动性质.在一定条件下,建立了两个新的振动性定理,推广和改进了已知的结果. This paper is concerned with oscillation property of soilutions of a class of second order nonlinear differential equation with perturbation.Two new theorems of oscillation property are established.These results generalize the known results.
作者 高丽 张全信
出处 《大学数学》 2010年第3期99-102,共4页 College Mathematics
基金 山东省教育厅科研发展计划项目(J07WH01)
关键词 非线性 摄动微分方程 振动性质 nonlinear differential equation with perturbation oscillation property
  • 相关文献

参考文献6

  • 1Yan Jurang.Oscillation theorems for second order linear differential equations with damping[J].Proc.Amer.Math.Soc.,1986,98(2):276-282.
  • 2Cecchi M and Marini M.Oscillatory and nonoscillatory behavior of a second order functional differential equation[J].Rocky Mount.J.Math,1992,22(4):1259-1276.
  • 3Rogovchenko Yu V.On oscillation of a second order nonlinear delay differential equation[J].Funkcial Ekvac,2000,43(1):1-29.
  • 4张全信,燕居让.一类二阶非线性阻尼微分方程的振动性[J].系统科学与数学,2004,24(3):296-302. 被引量:35
  • 5张全信,燕居让.二阶非线性阻尼微分方程解的振动性质[J].数学杂志,2007,27(4):455-460. 被引量:14
  • 6Ladde G S,Lakshmikantham V and Zhang B G.Oscillation theory of differential equations with deviating arguments[M].New York:Marcel Dekker,1987.

二级参考文献10

  • 1张全信,燕居让.一类二阶非线性阻尼微分方程的振动性[J].系统科学与数学,2004,24(3):296-302. 被引量:35
  • 2燕居让,张全信.二阶非线性阻尼常微分方程的振动性定理[J].系统科学与数学,1993,13(3):276-278. 被引量:16
  • 3Rogovchenko Yu V. On oscillation of a second order nonlinear delay differential equation. Funkcial.Ekvac. 2000, 43: 1-29.
  • 4Jurang Yan. Oscillation theorems for second order linear differential equations with damping.Proc. Amer. math. Soc., 1986, 98: 276-282.
  • 5Cecchi M and Marini M. Oscillatory and nonoscillatory behavior of a second order functional differential equation. Rocky Mount. J. Math., 1992, 22: 1259-1276.
  • 6Ladde G S, Lakshmikantham V, and Zhang B G. Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987.
  • 7Cechi M.,Marini M..Oscillatory and nonoscillatory behavior of a second order functional differential equation[J].Rocky Mount.J.Math.,1992,22(4):1259-1276.
  • 8Rogovchenko Yu.V..On oscillation of a second order nonlinear delay differential equation[J].Funkcial.Ekuac.2000,43:1-29.
  • 9Yan J.R..Oscillation theorems for second order Linear differential equations wkh damping[J].Proc.Amer.Math.Soc,1986,98:276-282.
  • 10Ladde G.S.,Lakshmikantham V.,Zhang B.G..Oscillation Theory of Differential Equations with Deviating Arguments[M].New York:Marcel Dekker,1987.

共引文献39

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部