摘要
采用约化摄动法将离子声波方程化为kdv方程,引入一个新的变换,并选取准确的试探函数形式,可简捷获得kdv方程的孤子解及离子声波方程的孤波解,所得结果与已有结果完全吻合.该孤波解揭示了波的振幅、波速以及孤子宽度之间的相互关系.
Ion-acoustic wave equations are turned into kdv equations with the reductive perturbation method.After a new transformation and adoption of a correct form of trial function,we can briefly obtain the soliton solutions to kdv equations and the solitary solutions to ion acoustic wave equations.The results obtained match perfectly the known results.The soliton solution reveals the relationship among the amplitude,velocity and the solitary width of the wave.
出处
《南通大学学报(自然科学版)》
CAS
2010年第2期90-94,共5页
Journal of Nantong University(Natural Science Edition)
基金
南通大学自然科学基金项目(06Z004)
关键词
非线性波动方程
离子声波
试探函数法
孤子解
行波解
nonlinear wave equation
ion-acoustic wave
trial function method
soliton solution
traveling wave solution