期刊文献+

一类具有一般非线性接触率及潜伏年龄结构的SEIRS传染病模型

A class of SEIRS epidemic model with general nonlinear contact rate and latent age structure
下载PDF
导出
摘要 在经典的SEIRS常微分方程模型的基础上,考虑更一般的非线性接触率及潜伏年龄结构,建立一类新的SEIRS传染病模型,运用Bellman-Grownall引理、不动点原理、解的延拓方法等数学方法讨论模型非负解的存在性及唯一性. On the basis of classical ordinary differential equation models and taking into account of general nonlinear contact rate and latent age structure,a new SEIRS epidemic model was formulated.By using the Bellman-Grownall lemma,fixed point theorem and solution extension method,the existence and uniqueness of non-negative solution of the model were discussed.
出处 《兰州理工大学学报》 CAS 北大核心 2010年第4期134-139,共6页 Journal of Lanzhou University of Technology
关键词 SEIRS传染病模型 非线性接触率 潜伏年龄结构 SEIRS epidemic model nonlinear contact rate latent age structure
  • 相关文献

参考文献9

  • 1THIEME H R,CASTILLO CHAVEZ C. How may infectionage-dependent infectivity affect the dynamics of HIV/AID[J]. SIAM J Appl Math, 1993,53(5) : 1447-1479.
  • 2KIM M Y, MIINER F A. A mathematical midel of epidemics with screening and variable infectivity [J]. Math Comput Modelling, 1995,221 (7) : 29-42.
  • 3KIM M Y. Existence of steady state solution to an epidemic model with screening and their asymptotic stability [J]. Appl Math Comput, 1996,74 (1) : 37-58.
  • 4KRIBS-ZALETA C M, MAETCHEVA M. Vaccination strategies an backward bifurcation in an age-since-infection structured model [J]. Math Biosci, 2002,177/178(2) : 317-322.
  • 5INABA H, SEKINE H. A mathematical model for Chagas disease with infection-age-dependent infectivity [J]. Math Biosci, 2004,190(4) : 39-69.
  • 6LI J, ZHOU Y C, MA Z Z, et al. Epidemiological models for mutating pathogens [J]. SIAM J Appl Math, 2004,65 (1) : 1- 23.
  • 7徐文雄,张仲华.年龄结构SIR流行病传播数学模型渐近分析[J].西安交通大学学报,2003,37(10):1086-1089. 被引量:30
  • 8ZHANG Z H,PENG J G. A SIRS epidemic midel with infection dependence [J]. J Math Anal Appl, 2007,331 (2) : 1396- 1414.
  • 9COOK K L, VAN DEN DRIESSCHE P. Analysis of an SEIRS epidemic model with two delays [J]. J Math Biol, 1996,35(2): 240-260.

二级参考文献7

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 2Thieme H R, Castillo-Chavez C. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math, 1993, 53(5): 1 447-1 479.
  • 3Feng Z, Iannelli M, Milner F A. A two-strain tuberculosis model with age of infection [J]. Siam J Appl Math, 2002,62(5):1 634-1 656.
  • 4Castillo-Chavez C, Feng Zhilan.Global stability of an age structure model for TB and its applications to optional vaccination strategies [J]. Mathematical Biosciences, 1998, 151(2):135-154.
  • 5Xiao Yanni, Chen Lansun, Bosch F V D. Dynamical behavior for a stage-structured SIR infectious disease model [J]. Nonlinear Analysis: Real World Applications, 2002, 3(2):175-190.
  • 6Song Baojun, Castillo-Chavez C, Aparicio J P. Tuberculosis models with fast and slow dynamics: the role of close and casual contacts [J]. Mathematical Biosciences, 2002, 180(1/2): 187-205.
  • 7陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部