期刊文献+

高阶非线性有理差分方程的全局吸引性

Global attractivity of a higher order nonlinear rational difference equation
下载PDF
导出
摘要 研究非线性差分方程xn+1=(pxn-xn-k)/(q-xn-k)(n=0,1,2,…)解的全局行为,证明方程唯一的正平衡点在一定条件下的全局吸引性. The global behavior of the solutions of nonlinear difference equation xn+1=(pxn-xn-k)/(q-xn-k)(n=0,1,2,…) was studied.The global attractivity of the unique positive equilibrium point of the foregoing equation was proved under certain conditions.
出处 《兰州理工大学学报》 CAS 北大核心 2010年第4期149-151,共3页 Journal of Lanzhou University of Technology
关键词 差分方程 全局吸引子 渐近稳定性 difference equation attractor asymptotic stability
  • 相关文献

参考文献7

  • 1KURUKLIS S A. The asymptotic stability of xn+1- axn+bxn-k = 0 [J ]. J Math Anal AppI, 1994,188: 719-731.
  • 2DEVAULT R, KOSMALA W, LADAS G, et al. Global behavior of yn+1=p+ynk/qyn+ynk[J].Nonlinear Analysis, 2001, 474743-4751.
  • 3KOCIC V L, LADAS G. Global behavior of nonlinear differenee equations of higher order with applications [M]. Dordreeht: Kluwer Academic Publishers, 1993.
  • 4LI W T, SUN H R. Dynamics of a rational difference equation [J]. Appl Math Comput,2005,163:577-591.
  • 5AGARWAL R P,LI W T,PANG P Y H. Asymptotic behavior of a class of nonlinear delay difference equations [J]. J Diff Equat Appl,2002,8,719-728.
  • 6KULENOVIC M R S, LADAS G,PROKUP NIL A rational difference equation [J]. Comput Math Appl, 2001,41: 671- 678.
  • 7KULENOVIC M R S, LADAS G. Dynamics of second order rational difference equations with open problems and conjectures [M]. Boca Raton:Chapman & Hall CRC,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部