期刊文献+

基于PCA和BP神经网络的O—糖基化位点的预测和模式分析 被引量:3

Pattern analysis and prediction of O-linked glycosylation sites in protein based on PCA and BP neural networks
下载PDF
导出
摘要 糖基化是真核细胞中最常见的翻译后蛋白质修饰过程之一。传统的神经网络方法已被应用预测蛋白质糖基化位点,预测的准确性主要依赖于特征向量的维数(蛋白质序列的长度),并随着蛋白质序列长度的增加而提高,但网络的结构变得越来越复杂,增加了计算运行成本。为了解决这一问题,提出了主成分分析和BP神经网络相结合的新方法对O—糖基化位点进行预测和分析,用PCA提取主成分构造子空间以降低输入的蛋白质序列的维数,再用BP神经网络预测一个特定的蛋白质序列是否被糖基化。实验表明,提出的新方法能大大缩短计算时间,并能提高预测的准确性。 Glycosylation is one of the most common post-translation modification of protein in eukaryotic cells.Conventional neural network method can be applied to predict glycosylation site in protein.The prediction accuracy mainly depends on the dimension of feature vector(the length of encode protein sequence).But with the increasing of window size,the structure of neural network becomes more complex definitely and it is time-consuming.A new method based on principal component analysis(PCA) and BP(Back Propagation)neural network for pattern analysis and prediction O-linked glycosylation site in different windows size was proposed to solve this question.Firstly,PCA is applied to extract feature and reduce dimension,then,the neural network is used to predict whether a particular site of serine or threonine is glycosylated.Compared with conventional neural network methods,the proposed method shows that the performance has a better improvement,and the method can greatly save training time.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2010年第9期61-65,75,共6页 Journal of Central South University of Forestry & Technology
基金 日本国文部省教育 科技 文化 运动项目(19300080) 湖南省研究生创新基金(CX2009B159)
关键词 O—糖基化 模式分析 主成分分析 BP神经网络 O-glycosylation pattern analysis principal component analysis back propagation neural network
  • 相关文献

参考文献10

  • 1HART G W. Glycosylation[ J]. Current Opinion in Cell Biology, 1992, 4:1017 - 1023.
  • 2WILSON I B H, GAVEL Y, HEUNE G. Amino Acid Distributions around O-linked Glycosylation Sites[J]. Biochem. , 1991, 275 : 529 - 534.
  • 3ELHAMMER A P, POORMAN R A, BROWN E, et al. The Specificity of UDP-Gal NAc : Polypeptide N-Acetylgalactosaminyltransferase as Inferred from a Database of in Vivo Substrates and from the in Vitro Glycosylation of Proteins and Peptides [J ]. J. Biol. Chem. ,1993, 268 : 10029 - 10038.
  • 4JULENIUS K, MOLGAARD A, GUPTA R, et al. Prediction, Conservation Analysis and Structural Characterization of Mammalian Mucin-type O-glycosylation Sites[ J]. Glycobiology, 2004, 15 : 153 - 164.
  • 5LI S, LIU B, ZENG R. , et al. Predicting O-glycosylation Sites in Mammalian Proteins by Using SVMs [ J]. Computational Biology and Chemistry, 2006, 30:203 -208.
  • 6NISHIKAWA I, SAKAMOTO H, NOUNO I, et al. Prediction of the O-glycosylation Sites in Protein by Layered Neural Networks and Support Vector Machines [ J ]. Lecture Notes in Artificial Intelligence ( Springer), 2006, LNAI 4252 : 953 - 960.
  • 7CHEN Y W, YANG X, ITO M, et al. Panern Analysis and Prediction of O-linked Glycolsylated Sites in Protein by Principal Component Subspace Analysis[ J]. Lecture Notes in Artificial Intelligence ( Springer), 2007, LNAI 4693 : 326 -334.
  • 8YANG X, CHEN Y W, ITO M, et al. Principal Component Analysis of O-linked Glycosylation Sites in Protein Sequence[ J]. Lecture Notes In Artificial Intelligence, 2007:121 -126.
  • 9Protein UniProt [ EB/OL]. http://www, uniprot, org/, 2010.
  • 10BISHOP C M. Neural Network for Pattern Recognition[ M]. Oxford : Oxford University Press, 2000.

同被引文献28

  • 1林少全,吴春晖.美国塑料管道发展之道[J].国外塑料,2006,24(9):22-25. 被引量:4
  • 2肖燕,贾晓辉.聚乙烯管道的电熔焊接[J].新型建筑材料,2007,34(4):15-17. 被引量:7
  • 3Nishikawa I, Sakamoto H and Nouno I. Prediction of the O-glycosylation sites in protein by layered neural networks and support vector machines. Lecture Notes in Artificial Intelligence, 2006, 4252:953-960.
  • 4Chen Y W, Yang X and Ito M. Pattern analysis and prediction of O-linked glycolsylated sites in protein by principal component subspace analysis, Lecture Notes in Artificial Intelligence, 2007, 4693:326-334.
  • 5Protein Datebase [EB/OL]. http://www.uniprot, org.
  • 6Jolliffe I T. Principal Component Analysis. New York: Springer- Verlag, 1996.
  • 7Hyvarinen. A survey on independent component analysis. Neural Computing Surveys, 2001, 2(4):94-128.
  • 8Bell A J and Sejnowski T J. An information-maximization approach to blind separation and blind deeonvolution. Neural Computation, 1999:1129-115.
  • 9Seta D G. N protein glyosylation and diseases:blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin Chem, 2000, 46:795-805.
  • 10Hart G W. Current opinion in cell biology. Glycosylation, 1992, 4:1017-1023.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部