期刊文献+

基于ART与RBF网络的混合网络模型设计

Design of a Hybrid Network Model Based on Adaptive Resonance Theory(ART) and Radial Basis Function(RBF) Network
下载PDF
导出
摘要 为了解决自适应共振理论(adaptive resonance theory,ART)网络对新的输入样本处理能力差,网络记忆能力差,径向基(radial basis function,RBF)网络选择径向基函数,确定隐节点数目困难的问题,设计了一种基于ART与RBF网络的混合网络模型。将ART网络的特点引入到RBF网络中,通过ART网络的识别与比较功能快速确定RBF网络最少的隐节点数目,同时通过ART理论中警戒门限的检验在线确定是否合并或删除隐节点。并且引入了异常数据修正方法和模糊预处理方法。通过MATLAB神经网络工具箱,对该混合网络进行仿真试验。结果表明:该方法能够有效地减少隐含在数据中的随机性,加快神经网络收敛速度,提高神经网络的建模精度。 In order to solve the shortcomings of the poor ability of processing new input samples with adaptive resonance theory(ART) network and the poor memory of the network,and the difficulties of selecting radial basis function(RBF) and determining the number of hidden nodes of a RBF network,a hybrid network based on ART and RBF network model is designed in this paper.The characteristics of ART network are introduced into RBF network,then the least number of hidden nodes of RBF network is quickly identified through the identification and comparison function of ART,and the online merger and deletion of hidden nodes are determined through the alert threshold of ART.Moreover,the methods for amendment of abnormal data and fuzzy preceding operation are used.The hybrid network is simulated through the neural network toolbox of MATLAB.The results show that the method can effectively reduce the implied randomness of data and speed up the convergence rate of the neural network,and the accuracy of neural network modeling is improved.In the forecasting of network,the hybrid network model is superior to the single RBF network model.
出处 《机械科学与技术》 CSCD 北大核心 2010年第9期1198-1201,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 陕西省自然科学基金项目(2007E218) 陕西省教育厅自然科学专项项目(09JK559)资助
关键词 ART网络 RBF网络 异常数据修正 模糊预处理 隐节点 ART RBF network abnormal data amendment fuzzy preceding operation hidden node
  • 相关文献

参考文献4

二级参考文献22

  • 1何海,陈绵云.GM(1,1)模型预测公式的缺陷及改进[J].武汉理工大学学报,2004,26(7):81-83. 被引量:37
  • 2芮勇,金丕彦.神经网络ART模型在故障诊断中的应用[J].数据采集与处理,1994,9(2):90-95. 被引量:3
  • 3郭文勇,朴甲哲,张永祥.柴油机缸套磨损故障的机体振动监测研究[J].振动.测试与诊断,2005,25(4):289-291. 被引量:17
  • 4Barney G C, dos Santos S M. Elevator Traffic Analysis: Design and Control[M]. London, UK: Peter Peregrinus Ltd, 1985.
  • 5Yang Z S, Shao C, Li G Z. Multi-objective optimization for EGCS using improved PSO algorithm[A]. Proceedings of the American Control Conference[C]. Piscataway, NJ, USA: IEEE, 2007. 5059-5063.
  • 6Cortes P, Munuzuri J, Onieva L. Design and analysis of a tool for planning and simulating dynamic vertical transport[J]. Simulation, 2006, 82(4): 255-274.
  • 7Wang P L, Zhang G X, Wang L. Simulation of customers-flow model based-on elevators group control technique[A]. Proceedings of the First IEEE International Multi-Symposiums on Computer and Computational Sciences[C]. Piscataway, NJ, USA: IEEE, 2006. 568-571.
  • 8Lu M, Wevers K. Grey system theory and applications: A way forward[J]. Journal of Grey System, 2007, 10(1): 47-53.
  • 9Zhang X X. The Essential of GM(1,1) model[J]. Journal of Grey System, 2007, 10(2): 81-87.
  • 10Haykin S. Neural Networks: A Comprehensive Foundation[M]. Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部