期刊文献+

薄壁圆柱壳固有频率的计算 被引量:2

Calculating Natural Frequencies of Thin Circular Cylindrical Shells
下载PDF
导出
摘要 采用Flügge壳体理论计算了薄壁圆柱壳的固有频率,为了提高计算精度,采用高斯迭代法求解计算固有频率的超越函数方程。本文计算了3种边界条件下薄壁圆柱壳的固有频率,绘制了振型图,并与NASA实验值作了对比。对比结果表明:该方法的计算结果的误差不超过4.38%。 A method for calculating the natural frequencies of thin cylindrical shells is presented;it is based on Flügge′s shell equations.Gauss′ method is exploited to calculate the transcendental function of natural frequencies which can be solved with high accuracy.Calculation results of natural frequencies are presented for different boundary conditions of thin cylindrical shells,and mode shapes are presented.Comparison with the experimental results of NASA shows that the calculating error by our method is less than 4.38%.
出处 《机械科学与技术》 CSCD 北大核心 2010年第9期1226-1229,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 薄壁圆柱壳 固有频率 thin cylindrical shells natural frequency
  • 相关文献

参考文献5

  • 1Warburton G B. Natural frequencies of thin cantilever cylindrical shells[J]. Journal of Sound and Vibration, 1970,11(3) :335-338.
  • 2Chung H. Free vibration analysis of circular cylindrical shells[ J]. Journal of Sound and Vibration, 1981,74(3) :331 -350.
  • 3Shaanna C B. Natural frequencies of circular cylindrical shells [J]. Journal of Sound and Vibration, 1972,21 (3):317 -327.
  • 4Flugge W, Strees in Shells[ M]. Springer-Verlag, 1964.
  • 5Sewall J L, Naumann E C. An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and Without Longitudinal Stiffeners[R]. NASA TND-4705, Sept. 1968.

同被引文献21

  • 1高原,马勉军,魏杰,黄良甫.菲涅耳硅橡胶透镜表面防护薄膜的制备与表征[J].真空科学与技术学报,2006,26(z1):110-114. 被引量:2
  • 2Eskenazi M, White S, Spence B, et al. Promising results from three SBIR solar array technology development programs [ C ]. 18th Space Photovoltaic Research and Technology Conference, Cleveland, USA, 2003.
  • 3Chung H. Free vibration analysis of circular cylindrical shells [ J ]. Journal of Sound and Vibration, 1981, 74 (3) :331 - 350.
  • 4Huang W D, Li Y P, Han Z F. Theoretical analysis of error transfer from surface slope to refractive ray and their application to the solar concentrated coUector [ J. Renewable Energy, 2013, 57:562 - 569.
  • 5Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells [ M]. New York: McGraw-Hill, 1987.
  • 6Soedel W. Vibrations of shells and plates [ M ]. New York: Marcel Dekker Inc, 2004.
  • 7Rongong J A, Tomlinson G R. Suppression of ring vibration modes of high nodal diameter using constrained layer damp- ing methods. Smart Materials and Structures, 1996,5 ( 5 ) : 672 - 684.
  • 8Wang C, Lai J C S. Prediction of natural frequencies of fi- nite length circular cylindrical shells. Applied Acoustics, 2000, 59 (4) : 385 - 400.
  • 9E1-Kaabazi N, Kennedy D. Calculation of natural frequen- cies and vibration modes of variable thickness cylindrical shells using the Wittrick-Williams algorithm. Computers & Structures, 2012, 104-105(4) : 4 - 12.
  • 10E1-Mously M. Fundamental natural frequencies of thin cy- lindrical shells: a comparative study. Journal of Sound and Vibration, 2003, 264(5): 1167- 1186.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部