期刊文献+

一种基于三部图网络的协同过滤算法 被引量:4

A collaborative filtering recommender algorithm based on tripartite network
下载PDF
导出
摘要 推荐系统是电子商务领域最重要的技术之一,而协同过滤算法又是推荐系统用得最广泛的.提出了一种基于加权三部图网络的协同过滤算法,用户、产品及标签都被考虑到算法中,并且研究了标签结点的度对用户相似性计算的影响.实验结果表明,此算法在解决用户冷启动问题的同时,还具有较高的推荐准确性. Recommender system is one of the most important technologies in E-commerce,and the collaborative filtering algorithm is the most widely used technique in recommender system.In this paper,we proposed a collaborative filtering algorithm based on weighted tripartite network,which takes users,items and tags into account,and we also studied the degree of tags which may affect the user-user similarity computation.The experimental results demonstrate that the algorithm can solve the cold start problem with high recommendation accuracy.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2010年第4期337-339,共3页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 江苏省"六大人才高峰"项目(06-A-027)
关键词 推荐系统 协同过滤 二部图网络 三部图网络 相似性 recommender system collaborative filtering bipartite network tripartite network similarity
  • 相关文献

参考文献4

  • 1Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on WWW.Hong Kong:IEEE Press,2001:285-295.
  • 2Pazzani M J.A framework for collaborative,content-based,and demographic filtering[J].Artificial Intelligence Review,1999,13(5/6):393-408.
  • 3Zhou T,Ran J,Medo M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,Statistical,Nonlinear,and Soft Matter Physics,2007,76(4):046115.
  • 4Zhang Z K,Zhou T,Zhang Y C.Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs[J].Physica A,2010,389:179-186.

同被引文献53

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部