期刊文献+

基于QR分解的线性图嵌入算法与人脸识别 被引量:2

Linear Extension of Graph Embedding Based on QR Decomposition and Face Recognition
下载PDF
导出
摘要 针对小样本问题,提出了一种基于QR分解的线性图嵌入(Linear Extension of Graph Embedding,LGE)求解算法,并将其用于人脸识别。与传统的用主成分分析进行降维不同,新算法利用QR分解对数据进行降维,然后在降维后的空间利用线性图嵌入算法进行二次特征抽取,最后利用最近邻分类器进行分类识别。新算法有效的解决了小样本问题,并且在降维的过程中不损失鉴别信息,提高了算法的识别率。在Yale和PIE人脸数据库的实验表明了本文算法在识别性能上优于传统算法。 In order to address small sample size (3S) problem, a new algorithm for implementing linear extension of graph embedding (LGE) based on QR decomposition is proposed, which could be used in face recognition. Different from the traditional approach of dimension reduction by Principle Component Analysis (PCA), the new algorithm applies QR decomposition to implement dimension reduction. Then the LGE is followed and employed for the second feature extraction in the transformed space. Finally, the nearest neighbor classifier is used for classification and recognition. The new algorithm not only can effectively solve 3S problem, but also hold the discriminant information. Experimental results on YALE and PIE face databases show that the algorithm outperforms the traditional method in recognition rates.
出处 《光电工程》 CAS CSCD 北大核心 2010年第9期115-121,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(60873151) 国家863计划项目(2006AA01Z119) 江苏省2010年度普通高校研究生科研创新计划项目(178)
关键词 线性图嵌入 最佳鉴别矢量 降维 QR分解 linear extension of graph embedding (LGE) optimal discriminant vectors dimension reduction QR decomposition
  • 相关文献

参考文献11

  • 1Fukunaga K.Introduction to Statistical Pattern Recognition(second edition)[M].Boston,USA:Academic Press,1990.
  • 2Duda R O,Hart P E,Stork D G.Pattern Classification[M].New York:John Wiley & Sons,2000.
  • 3Beihumeur P N,Hespanha Joao P,Kriegman David J.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection[J].IEEE Trans.Pattern Analysis and Machine InteUigence(S0162-8828),1997,19(7):711-720.
  • 4HE Xiao-fei,YAN Shui-cheng,HU Yu-xiao,et al.Face Recognition Using Laplacianfaces[J].IEEE Trans on Pattern Analysis and Machine Intelligence (S0162-8828),2005,27(3):328-340.
  • 5YANG Jian,ZHANG David,YANG Jing-yu,et al.Globally Maximizing,Locally Minimizing:Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics[J].IEEE Trans.Pattern Analysis and Machine Intelligence (S0162-8828),2007,29(4):650-664.
  • 6YAN Shui-cheng,XU Dong,ZHANG Ben-yu,et al.Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE Trans.Pattern Analysis and Machine Intelligence (S0162-8828),2007,29(1):40-51.
  • 7CHEN Hwann-Tzong,CHANG Huang-Wei,LIU Tyng-Luh.Local discriminant embedding and its variants[C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,USA,June 20-26,2005:846-853.
  • 8HE Xiao-fei,CAI Deng,YAN Shui-cheng,et al.Neighborhood preserving embedding[C] //Tenth IEEE International Conference on Computer Vision,Beijing,China,2005:1208-1213.
  • 9DENG Wei-hong,HU Jia-ni,GUO Jun,et al.Comments on "Globally Maximizing,Locally Minimizing:Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics"[J].IEEE Trans.Pattern Analysis and Machine Intelligence (S0162-8828),2008,30(8):1503-1504.
  • 10CAI Deng,HE Xiao-fei,HU Yu-xiao,et al.Learning a Spatially Smooth Subspace for Face Recognition[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Minneapolis,Minnesota,USA,June 18-23,2007:1-7.

同被引文献23

  • 1孙丽娟,杨丹.基于谱回归的人脸识别的研究[D].重庆:重庆大学.2009.
  • 2徐林丰,高新波.图嵌入模型及其在数据降维中的应用[D].西安:西安电子科技大学,2011.
  • 3潘俊,孔繁盛.基于图的半监督学习及其应用研究[D].杭州:浙江大学.2011.
  • 4ZHANG L M,QIAO L S,CHEN S C. Graph-op-timized locality preserving projections[J]. Pattern Recognition,2010,43 (6):1993-2002.
  • 5Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces : a survey[J]. Proceedings of the IEEE, 1995, 83 (5) : 705 -740.
  • 6Cao L J, Chua K S, Chong W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine[J]. Neuroeomputing, 2003, 55( 1 ) : 321-336.
  • 7Chougdali K, Zahid J N. Kernel weighted scatter-difference-based discriminant analysis for face recognition [C]//Proceedings of the 5th International Conference on Image Analysis and Recognition. Berlin, Germany: Springer-Verlag, 2008:977-983.
  • 8Perlibakas V. Distance measures for PCA-based face recognition[J]. Pattern Recognition, 2004, 25 (6) : 711-724.
  • 9李神.基于核技术的子空间分析方法及其在人脸识别中的应用[D].北京:中国科学院计算技术研究所,2007.
  • 10Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel I-J]. Neural Computation, 2003, 15 (7) : 1667-1689.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部