期刊文献+

静电纺丝制备苯乙烯马来酸酐共聚物纳米纤维及其固定化β-D-半乳糖苷酶 被引量:4

Preparation of Electrospun Poly(styrene-co-maleic anhydride) Nanofibers and Their Use in Immobilization of β-D-Galactosidase
下载PDF
导出
摘要 采用静电纺丝技术制备苯乙烯-马来酸酐共聚物纳米纤维,最佳电纺条件为:聚合物浓度0.35g/mL、针尖到接收板距离25cm、电纺液流量250μL/h、电压21kV.该条件下获得了直径约300nm且分布均一的纳米纤维.利用该纳米纤维固定β-D-半乳糖苷酶,固定化反应的最适pH值为4.0,此时酶负载量为(15.1±0.5)mg/g.固定化酶催化2-硝基苯酚-β-D-半乳吡喃糖苷水解反应的米氏常数K_m=2.7mmol/L,略大于游离酶的K_m值(2.2mmol/L);最大反应速率V_(max)为97.2μmol/(min·mg),为游离酶的47.8%.固定化酶在37℃下重复操作21次后活性损失仅为15%.在连续搅拌式反应器中将固定化酶用于催化乳糖的水解反应,连续使用17d仍能稳定运行. Unique poly(styrene-co-maleic anhydride) nanofibers with a uniform diameter of about 300 nm were prepared by eletrospinning a solution containing 0.35 g/mL polymer,25 cm gap between ejection needle tip and collector,flow rate of 250 L/h,and applied voltage of 21 kV.The electrospun nanofibers were applied subsequently for immobilization of β-D-galactosidase,an enzyme loading of(15.1±0.5) mg protein/g membrane was obtained.The immobilized enzyme demonstrated a Michealis constant(K_m) of 2.7 mmol/L,slightly higher than that of the native enzyme(2.2 mmol/L).The maximum reaction velocity(V_(max)) of the immobilized enzyme was found as 97.2 mol/(min·mg),47.8% that of native enzyme.The immobilized enzyme showed an excellent reusability such that 21 reusing cycles only led to 15% loss of the enzyme activity.Furthermore,the immobilized β-D-galactosidase was suitable for hydrolysis of lactose in a continuous stirring tank reactor that was operated steadily for 17 d.
出处 《过程工程学报》 CAS CSCD 北大核心 2010年第4期743-749,共7页 The Chinese Journal of Process Engineering
基金 国家高技术研究发展计划(863)基金资助项目(编号:2008AA10Z302) 国家自然科学基金资助项目(编号:20706054,20728607,20976180) 国家重点基础研究发展规划(973)基金资助项目(编号:2009CB724705).
关键词 静电纺丝 纳米纤维 苯乙烯-马来酸酐共聚物 Β-D-半乳糖苷酶 乳糖水解 electrospinning nanofiber poly (styrene-co-maleic anhydride) β-D-galactosidase lactose hydrolysis
  • 相关文献

参考文献20

  • 1Ansari S A, Husain Q. Lactose Hydrolysis by Beta Galactosidase Immobilized on Concanavalin a-Cellulose in Batch and Continuous Mode [J]. J. Mol. Catal. B: Enzyme, 2010, 63(1/2): 68-74.
  • 2Mladenoska I, Nikolovska-Nedelkoska D, Winkelhausen E, et al.Aspergillus oryzae-Beta-Galactosidase---An Efficient Catalyst for Alkyl-beta-galactoside Synthesis in Organic Mono-phase System [J]. Macedonian J. Chem. Chem. Eng, 2007, 26(1): 17-24.
  • 3Zhou Q Z K, Chen X D. Immobilization of Beta-Galactosidase on Graphite Surface by Glutaraldehyde [J]. J. Food Eng., 2001, 48(1): 69-74.
  • 4Bayramoglu G Tunali Y, Arica M Y. Immobilization of Beta-Galactosidase onto Magnetic Poly(GMA-MMA) Beads for Hydrolysis of Lactose in Bed Reactor [J]. Catal. Commun., 2007, 8(7): 1094-1101.
  • 5Wang E Nanoscale Biocatalyst Systems [J]. Curr. Opin. Biotechnol., 2006, 17(6): 574-579.
  • 6Kim J, Grate J W, Wang P. Nanostructures for Enzyme Stabilization [J]. Chem. Eng. Sci., 2006, 61(3): 1017-1026.
  • 7Ismail A, Soultani S, Ghoul M. Enzymatic-catalyzed Synthesis of Alkylglycosides in Monophasic and Biphasic Systems: I. The Transglycosylation Reaction [J]. J. Biotechnol., 1999, 69(2/3):135-143.
  • 8Ye P, Xu Z K, Wu J, et al. Nanofibrous Membranes Containing Reactive Groups: Electrospinning from Poly(acrylonitrile-co-maleic acid) for Lipase Immobilization [J]. Maeromolecules, 2006, 39(3): 1041-1045.
  • 9Wang Z G, Wang J Q, Xu Z K. Immobilization of Lipase from Candida rugosa on Electrospun Polysulfone Nanofibrous Membranes by Adsorption [J]. J. Mol. Catal. B: Enzyme, 2006, 42(1/2): 45-51.
  • 10Bradford M M. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding [J]. Anal. Biochem., 1976, 72(1/2): 248-254.

二级参考文献34

  • 1卓仁禧,罗毅,陶国良.固定化酶技术及其进展[J].离子交换与吸附,1994,10(5):447-452. 被引量:19
  • 2陈尊,孔维,周慧,李惟,沈家聪.接枝淀粉载体固定化糖化酶的研究[J].生物化学杂志,1995,11(2):150-154. 被引量:16
  • 3Dyal A,Loos K, Noto M, et al. Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles[ J]. J Am Chem Soc, 2003, 125(7) : 1684 - 1685.
  • 4Aoyama Y, Kanamori T, Nakai T, et al. Artificial viruses and their application to gene delivery, size-controlled gene coating with glycocluster nanoparticles[ J] .J Am Chem Soc,2003,125(12) :3455 - 3457.
  • 5Chen D H, Liao M H. Preparation and characterization of YADH-bound magnetic nanoparticles[J]. Journal of Molecular Catalysis B: Enzymatic,2002,16(5) :283 - 291.
  • 6Li J,Wang J Q, Gavalas V G, et al. Alumina-pepsin hybrid nanoparticles with orientation-specific enzyme coupling[J]. Nano Letter, 2003,3 (1) :55- 58.
  • 7Hong R, Fischer N O, Verma A, et al. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds [J] .J Am Chem Soc,2004,126(3) :739- 743.
  • 8Curri M L, Agostiano A, Leo G, et al. Development of a novel enzyme/ semiconductor nanoparticles system for biosensor application [ J ]. Materials Science and Engineering C,2002,22(2):449- 452.
  • 9Hong R, Emrick T, Rotello V M. Monolayer-controlled substrate selectivity using noncovalent enzyme-nanoparticle conjugates[ J]. J Am Chem Soc,2004,126(42) : 13572 - 13573.
  • 10Fischer N O,Verma A, Goodman C M, et al. Reversible “irreversible” inhibition of chymotrypsin using nanoparticle receptors[J]. J Am Chem Soc,2003,125(44) : 13387 - 13391.

共引文献12

同被引文献45

  • 1高嫄,黄发荣.苯乙烯-马来酸酐共聚物的生物降解性研究[J].功能高分子学报,2004,17(2):267-271. 被引量:7
  • 2聂华丽,朱利民.纤维载体固定化酶的制备及其应用[J].纺织学报,2006,27(7):104-108. 被引量:8
  • 3周家达,房宽峻,张霞.苯乙烯马来酸酐共聚物的阳离子化改性及其应用[J].中华纸业,2007,28(2):47-50. 被引量:12
  • 4T.Bahar,A.Tuncel.Immobilization of invertase onto crosslinked poly(p‐chloromethylstyrene) beads[J].J Appl Polym Sci.2001(6)
  • 5Iglauer S, Wu Y, Shuler P, et al. New Surfactant Classes for Enhanced Oil Recovery and Their Tertiary Oil Recovery Potential [J]. J. Pet. Sci. Technol., 2010, 71: 23-29.
  • 6Panintrarux C, Adachi S, Araki Y, et al. Equilibrium Yield of N-Alkyl-β-D-Glucoside through Condensation of Glucose and N-Alcohol by β-Glucosidase in a Biphasic System [J]. Enzyme Mierob. Technol., 1995, 17(1): 32-41.
  • 7Eibes G, Cajthaml T, Moreira M T, et al. Enzymatic Degradation of Anthracene, Dibenzothiophene and Pyrene by Manganese Peroxidase in Media Containing Acetone [J]. Chemosphere, 2006, 64(3): 408-414.
  • 8Eibes G; Lu-Chau T, Feijoo G, et al. Complete Degradation of Anthracene by Manganese Peroxidase in Organic Solvent Mixtures [J]. Enzyme Microb. Teehnol., 2005, 37(4): 365-372.
  • 9Eibes G, Moreira M, Feijoo G, et al. Operation of a Two-phase Partitioning Bioreactor for the Oxidation of Anthracene by the Enzyme Manganese Peroxidase [J]. Chemosphere, 2007, 66(9): 1744-1751.
  • 10Mori T, Fujita S, Okahata Y. Transglycosylation in a Two-phase Aqueous-Organic System with Catalysis by a Lipid-coated 13-D-Galactosidase [J]. Carbohydr. Res., 1997, 298(1): 65-73.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部