期刊文献+

分数阶系统的迭代最小二乘辨识算法 被引量:3

Iterative Least Square Identification Algorithm for Fractional Order System
下载PDF
导出
摘要 针对等比例阶次的分数阶系统的特点,提出了一种分数阶系统频域辨识的迭代最小二乘算法,并将运算数据的实部和虚部分离计算引入辨识过程,简化了计算的复杂度。此算法是整数阶系统辨识频域最小二乘算法的推广。通过无噪声和有噪声两种情况下的仿真实验,证明了该算法的有效性。 This article deals with the identification algorithm of the commensurate fractional order system in the frequency domain.An iterative least square identification algorithm was proposed aimed at the characteristic of commensurate fractional order system,which is a promotion of the integer-order system least-squares identification algorithm in frequency-domain.In order to simplify the calculation,the method of separated real part and imaginary part of the frequency data was introduced.The simulation resulted with noise-free and noisy data verified the effectiveness of the proposed method.
出处 《江南大学学报(自然科学版)》 CAS 2010年第4期404-408,共5页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家863计划项目(2008AA04Z131) 北京市优秀人才培养资助项目(2009D013000000003)
关键词 分数阶系统 频域辨识 迭代最小二乘算法 fractional order system identification in frequency-domain iterative least square algorithm
  • 相关文献

参考文献15

  • 1Heymans. Fractional calculus description of non-linear viscoelastic behavior of polymers [ J ]. Nonlinear Dynamics, 2004,38 (1- 2) : 221-231.
  • 2Engheta Nader. On the role of fractional calculus in electromagnetic theory [ J ]. IEEE Antennasand Propagation Magazine, 1997,39(4) : 35-46.
  • 3Rossikhin, Yuriy A, Shitikova, et al. Applications of fractional calculus to dynamic problemsof linear and nonlinear hereditary mechanics of solids [ J ]. Applied Mechanics Reviews, 1997,50 ( 1 ) : 15-67.
  • 4Matignon D. Stability resuhs for fractional differential equations with applications to control processing[C]// Computational Engineering in Systems and Application Multiconference, IMACS. Lille, France: IEEE-SMC, 1996:963-968.
  • 5LI Yan, CHEN Yang-quan, Podlubny I. Mittag-leffler stability of fractional order nonlinear dynamic systems [ J ]. Automatica, 2009,45 ( 8 ) : 1965-1969.
  • 6Matignon D, d' Andrea-Novel B. Some resuhs on controllability and observability of finite-dimensional fractional differential systems [ C ]// CESA96 IMACS Muhiconference : Computational Engineering in Systems Applications. Lille, France : Villeneuve d'Aseq, 1996:952-956.
  • 7Lurie B J. Three-parameter tunable tilt-integral-derivative (TID) controller: US, 5371670[ P]. 1994-12-06.
  • 8Oustaloup A, Mathieu B, Lanusse P. The CRONE control of resonant plants: application to a flexible transmission [ J ]. European Journal of Control, 1995,1 (2): 113-121.
  • 9Concepcion A Monje, Blas M Vinagre, Vicente Feliuand, et al. Tuning and auto-tuning of fractional order controllers for industry applications [ J ]. Control Engineering Practice, 2008,16 (7) :798-812.
  • 10Valerio D, da Costa J. Tuning of fractional PID controllers with Ziegler-Nichols-type rules [ J ]. Signal Processing, 2006,86 (10) : 2771-2784.

二级参考文献23

共引文献13

同被引文献36

  • 1商训秀,陈怀琛.一种递推实现的频域辨识算法[J].西安电子科技大学学报,1989,16(2):93-101. 被引量:1
  • 2艾剑良,邓建华,钱国红.频域极大似然法及其在飞机等效飞行品质辨识中的应用[J].西北工业大学学报,1995,13(3):393-397. 被引量:5
  • 3李远禄,于盛林,郑罡.非整数阶系统频域辨识的递推最小二乘算法[J].信息与控制,2007,36(2):171-175. 被引量:6
  • 4李远禄,于盛林.非整数阶系统的频域辨识法[J].自动化学报,2007,33(8):882-884. 被引量:15
  • 5R Pintelon, et al. Parametric identification of transfer functions in the frequency domain - a survey[ J]. IEEE Transaction on Auto- matic Control, 1994.
  • 6Beaulieu A, Bosse D, Micheau P, et al. Measurement of fractional order model parameters of respiratory mechanical impedance in total liquid ventilation [ J]. IEEE Transactions on Biomedical Engineering, 2012, 59 (2) : 323 - 331.
  • 7Galvao R K H, Hadjiloucas S, Kienitz K H, et al. Fractional order modeling of large three-dimensional RC networks[ Jl. IEEE Transactions on Circuits and Systems I : Regular Papers, 2013, 60 (3) : 624 - 637.
  • 8Djamah T, Mansouri R, Djennoune S, et al. Optimal low order model identification of fractional dynamic systems[ J]. Applied Mathematics and Computation, 2008, 206 (2) : 543 - 554.
  • 9Mansouri R, Bettayeb M, Djamah T, et al. Vector fitting fractional system identification using particle swarm optimization[ J]. Applied Mathe- matics and Computation, 2008, 206 (2) : 510 - 520.
  • 10Pintelon R, Schoukens J. System identification: A frequency domain approach[ M ]. 2nd ed. Piscataway, NJ, USA: IEEE, 2012 : 1 - 28 323.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部