期刊文献+

一种新型信号奇异值预处理方法 被引量:2

A Novel Pretreatment Method for Elimination of Signal′s Singular Points
下载PDF
导出
摘要 随着变频器等大功率电子开关器件的广泛应用,电信号中电磁干扰现象越来越严重,数据采集系统实时数据中的奇异点增多,且其分布特征不明显,对于低成本小系统来说,一些先进的数据处理方法无法实施,而传统均值滤波法和中值滤波法等滤波效果往往不理想。对此,提出了一种新型的信号奇异值的预处理方法,即PMF(预测均值滤波)法。该方法通过计算信号的前向均值和后向均值来分析信号的趋势,并将这个趋势作为判断奇异值的依据。如果是奇异值则将现有数据舍弃并根据前面判断的趋势对信号进行插值;如果不是则保留原数据,最后再对新的数据序列作均值滤波。应用结果表明,信号经过PMF法处理后其特征性能和平滑性得到大幅度提高,具有较好的实用价值。 Due to the popular application of power electronic switching parts such as invertors,the electric-magic noises in electric signals became more and more violent.The singular points in signals increased,but their distribution symposia are implicit.In small system with low cost,some advanced signal processing methods were difficult to implement.And traditional filters like mean filters or median filters are unable to get expected results.Therefore,this paper mentioned a novel pretreatment method named as PMF(Prediction Mean Filter) for elimination of signal's singular points.This method analyzed the trends of the signals firstly through calculating the forward and backward mean values of the signals.Then,based on the trends acquired above,make decision on whether the point being processed is singular point or not.If yes,replace the point with a new insert one.Otherwise,retain the point.Finally,reprocess the data with mean filter.The results show that the signals treated became more symbolic and slider.
出处 《江南大学学报(自然科学版)》 CAS 2010年第4期423-426,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家863计划项目(2007AA04Z193) 山东省自然科学基金项目(Y2007G49)
关键词 奇异值 信号滤波 预测均值滤波法 singular points signals filtering prediction mean filter
  • 相关文献

参考文献14

  • 1Dariusz Janecki. A generalized L2-spline filter[ J]. Measurement, 2009,42: 937-943.
  • 2HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- stationary time series analysis[ C]//Proc Royal Soc. Lond: [ s. n. ], 1998: 903-995.
  • 3Vatchev V. Intrinsic Mode Functions and the Hilbert Transform[ D]. [ S. l. ] : Department of Mathematics, University of South Carolina, 2004.
  • 4WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decompositon method[ C]// Proceedings of the Royal Society of London. London : [ s. n. ] , 2004 : 1597-1611.
  • 5孙晓兵,保铮.分数阶Fourier变换及其应用[J].电子学报,1996,24(12):60-65. 被引量:29
  • 6张宇,王希勤,彭应宁.自适应中心加权的改进均值滤波算法[J].清华大学学报(自然科学版),1999,39(9):76-78. 被引量:69
  • 7Tamal Bose,Jim Schroeder. Adaptive mean/median filtering[ J]. Proceedings of the Acoustics, 2000(6) :3830-3833.
  • 8Martin Welk, Joachim Weiekert, Florian Becker, et al. Median and related local filters for tensor-valued images [ J]. Signal Processing, 2007,87: 291-308.
  • 9李秀峰,苏兰海,荣慧芳,陈华.改进均值滤波算法及应用研究[J].微计算机信息,2008,24(1):235-236. 被引量:20
  • 10常瑞娜,穆晓敏,杨守义,齐林.基于中值的自适应均值滤波算法[J].计算机工程与设计,2008,29(16):4257-4259. 被引量:29

二级参考文献12

共引文献139

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部