期刊文献+

一种改进的2DPCA人脸识别方法 被引量:11

Improved 2DPCA method for face recognition
下载PDF
导出
摘要 在小样本情况下,传统的2DPCA算法中采用的训练样本的平均值不一定就是训练样本分布的中心,为了解决这个问题,提出了一种基于样本中间值的2DPCA人脸识别算法(M2DPCA),该算法采用训练样本的中间值代替训练样本的平均值,以此重建总体散布矩阵。在ORL和FERET人脸数据库上的实验结果证明,新方法可以有效改善识别性能,优于传统的PCA和2DPCA方法。 Under the condition of small sample size,the average of all training samples used in the traditional principal component analysis algorithm is not always the scatter center of the samples.To address the problem, a new two dimension principal component analysis method based on the sample median is proposed.This algorithm is called Median Two Dimension Principal Component Analysis(M2DPCA),in which the median of training samples is substituted for the average.To demonstrate the effectiveness of the method,extensive experiments are performed on two popular face databases, such as ORL and FERET.Experiment results indicate that the proposed method is better than traditional PCA and 2DPCA.
作者 韩晓翠
出处 《计算机工程与应用》 CSCD 北大核心 2010年第25期185-187,共3页 Computer Engineering and Applications
关键词 人脸识别 二维主成分分析 样本中间值 特征提取 face recognition Two-Dimension Principal Component Analysis(2DPCA) sample median feature extraction
  • 相关文献

参考文献12

  • 1Tan X Y, Chen S C.Face recognition from a single image per person:A survey[J].Pattern Recognition,2006,39: 1725-1745.
  • 2Zhao W, Chellappa R,Rosenfeld A, et al.Face recognition:A literature survey[J].Computing Surveys,2003,35(4):399-458.
  • 3张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:260
  • 4Lu J, Plataniotis K, Venetsanopoulos A.Face recognition using LDA-based algorithms[J].IEEE Trans on Neural Networks, 2003,14( 1 ): 195-200.
  • 5Keun-Chang K,Pedrycz W.Faee recognition using an enhanced independent component analysis approach[J].IEEE Trans on Neural Networks,2007, 18(2) :530-541.
  • 6Liu Q S, Lu H Q, Ma S D.Improving kernel Fisher discriminant analysis for face recognition[J].IEEE Trans on Circuits Syst Video Techn,2004,14( 1 ) :42-49.
  • 7李晓东,费树岷,张涛.基于奇异值特征和支持向量机的人脸识别[J].东南大学学报(自然科学版),2008,38(6):981-985. 被引量:20
  • 8Kirby M, Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 9Yang Jian, Zhang David, Frangi A F, et al.Two-dimensional PCA: A new approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26( 1 ) : 131-137.
  • 10Yang J,Zhang D,Yang J Y.Median LDA:A robust feature extraction method for face recognition[J].IEEE International Conference on Systems,Man,and Cybernetics,2006:4208-4213.

二级参考文献13

  • 1Zhao W, Chellappa R, Phillips P J,et al. Face recognition: a literature survey [ J ]. Acm Computing Surveys, 2003,35 (4) : 399 - 459.
  • 2Hong Z. Algebraic feature extraction of image for recognition [ J ]. Pattern Recognition, 1991, 24 ( 3 ) : 211 - 219.
  • 3Klema V C, Laub A J. Singular value decomposition: its computation and some applications [ J ]. IEEE Transactions on Automatic Control, 1980, 25 ( 2 ) : 164 - 176.
  • 4Cortes C, Vapnik V. Support-vector network [ J ]. Machine Learning, 1995,20(3) : 273 -297.
  • 5Mayoraz E, Alpaydin E. Support vector machines for multi-class classification [ C ]//Proceedings of International Work-Conference on Artificial and Natural Neural Networks. Berlin,Germany, 1999, 2 : 833 - 842.
  • 6Hsu C W, Lin C J. A simple decomposition method for support vector machines [ J ]. Machine Learning, 2002,46 ( 1 ) : 291 - 314.
  • 7Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [ J ]. IEEE Transactions on Neural Networks,2002,13 ( 2 ) :415 - 425.
  • 8Chang Chih-chung, Lin Chin-Jen. LIBSVM: a library for support vector machines [ EB/OL ]. (2001 ) [ 2008- 11 ]. http ://www. csie. ntu. edu. tw/ - cjlin/libsvm.
  • 9严超,苏光大.人脸特征的定位与提取[J].中国图象图形学报(A辑),1998,3(5):375-380. 被引量:42
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2278

共引文献278

同被引文献86

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部