期刊文献+

粗糙集属性约简方法及其在医疗中的应用研究 被引量:6

Research on attribute reduction based on rough set and its application in medical diagnosis
下载PDF
导出
摘要 针对基于可辨识矩阵核求取属性约简存在的空间与时间都不理想的问题,提出一种新的基于粗糙集的属性约简启发式算法。该方法不直接构造及存储可辨识矩阵,而且在核不存在的情况下,也能取得较好的起点核心集,将获取矩阵元素及得到核心元素同步进行,并加入了对属性集频率的综合考虑。同时,将此方法应用于医疗诊断决策,并对属性约简前后的决策性能进行了分析。实验结果表明,利用约简后的属性集,计算复杂性降低,同时保持高的决策准确率,算法是有效的。 The attribute reduction algorithm based on the core of distinct matrix always has poor efficiency in both time and space.A novel heuristic algorithm is proposed for attribute reduction based on rough set theory.Distinct matrix is not constructed and stored directly and a better core set can be obtained even if the core element is not existent.Obtaining the matrix element and core element are carried out simultaneously and the frequency of attribute set is considered in this method. Then the method is applied to medical diagnostic decision-making.Experiment results show that by using the reduced attri- bute set, it not only can decrease the computational complexity but also can keep high decision accuracy.The algorithm can find a good attribute subset.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第25期207-210,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2007AA01Z423 重庆市自然科学基金No.CSTC 2007BB2134 重庆市"十一五发展规划"重大科技专项项目(No.CSTC 2008AB5038)~~
关键词 粗糙集理论 属性约简 启发式算法 医疗诊断 rough set theory attribute reduction heuristic algorithm medical diagnosis
  • 相关文献

参考文献11

  • 1Pawlak Z.Rough sets[C]//International Journal of Computer and Information Sciences, 1982:341-356.
  • 2Pawlak Z.Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht:Kluwer Academic Publisher, 1991.
  • 3张腾飞,肖健梅,王锡淮.粗糙集理论中属性相对约简算法[J].电子学报,2005,33(11):2080-2083. 被引量:46
  • 4Perkins C E.Ad Hoc networking[M].[S.l.]: ADDISON-WESLEY Press, 2000.
  • 5Pawlak Z.Rudiment of rough sets[J].Information Sciences,2007, 177(1) :3-27.
  • 6Yee Leung, Wu Wei-zhi, Zhang Wen-xiu.Knowledge acquisition in incomplete information systems: A rough set approach[J].European Journal of Operational Research, 2006,168( 1 ) : 164-180.
  • 7Geng Zhi-qiang, Zhu Qun-xiong.Rough set-based heuristic hybrid recognizer and its application in fault diagnosis[J].Expert Systems with Applications, 2009,36 : 2711-2718.
  • 8任小康,吴尚智,马如云.基于可辨识矩阵的属性频率约简算法[J].兰州大学学报(自然科学版),2007,43(1):138-140. 被引量:26
  • 9王波,高克宁,张斌.基于粗集理论的数据过滤方法的研究[J].计算机工程与应用,2005,41(12):175-176. 被引量:1
  • 10Blake C L,Merz C J.UCI repository of machine learning databases[EB/OL].( 1998).http://www.ics.uci.edu/.

二级参考文献28

  • 1张文修 等.Rough集理论与方法[M].北京:科学出版社,2001..
  • 2[1]Vapnik V N.The Nature of statistical Learning Theory[M].New York: Springer-Verlag, 1995.
  • 3[2]Vapnik V N.An overview of statistical Learning Theory[J].IEEE Trans. Neural Network, 1999, 10 (5):988-999 .
  • 4[3]Vapnik V N.The Nature of statistical Learning Theory[M].New York: Springer-Verlag, 1999.
  • 5[4]L. Prechelt. Probenl.A set of neural network benchmark problem and benchmark rules[J].Fakulitat fur informatik, Univ. Karlsruhe, Germany, Tech. Rep.21/94, sepy 1994.
  • 6[5]Peter D. Turney.Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm[J].Journal of Artificial Intelligence Research 2 (1995) 369-409.
  • 7Pawlak Z Rough sets[J].Inter J of Computer and information Sciences, 1982; 11 (2) :341~356.
  • 8Pawlak Z.Rough set theory and its application to data analysis[J].Cybernetics and Systems, 1998; 9: 661~688.
  • 9GRZY MALA,BAUSSE J W. LERS:a System of Knowledge Discovery based on Rough Sets[C].In:Tsumoto S ed. Proc of 5th Int Workshop RSFD'96, Tokyo: Morgan Kanf_mann RSFD, 1996: 443 ~444.
  • 10ZIARKOW, SHANN.KDD-R: a Compre_hensive System for Knowledge Discovery Databases using Rough Sets[C].In:Lin T Y,Wild bergger A M eds.Soft Computing. Sandiego:Simulation Councils Inc,1995:298~301.

共引文献89

同被引文献44

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部