期刊文献+

基于组合Boosting回归的软测量建模

Soft sensing modeling based on combined Boosting algorithm
下载PDF
导出
摘要 为了提高Boosting回归算法的稳定性,提出了动态加权的组合Boosting回归算法,即DA-Boosting算法。首先以BP神经网络作为弱学习器,再调用Boosting回归算法构造强学习器,最后以强学习器得到的回归函数作为子函数进行动态加权平均,得到最终的组合函数。几个经典的分析回归数据集的测试表明,该算法不但具有良好的泛化能力,而且泛化性能稳定。最后将DA-Boosting算法用于丙烯软测量建模,应用结果表明该软测量模型泛化性能好,测量精度高。 To improve the Boosting algorithm stability, a Dynamically Averaging Boosting algorithm(DA-Boosting) is proposed.Using BP neural networks as a base learner, a leveraging learner is constructed by Boosting algorithm.The DA-Boosting algorithm is obtained by dynamically averaging the regression functions trained by leveraging learners.Experimental studies on three typical regression datasets show that this algorithm has good and stable generalization ability.Finally the DA-Boosting algorithm is applied to construct a soft sensing model for propylene concentration.Application results show that this model has high measurement precision as well as generalization ability.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第25期235-237,241,共4页 Computer Engineering and Applications
基金 国家863重点项目子课题(No.2006AA04030802) 江苏省自然科学基金No.BK2009356 江苏省高校自然科学研究计划项目No.09KJB510003 南京工业大学青年教师学术基金~~
关键词 BOOSTING 动态加权 软测量 Boosting dynamically average soft sensing
  • 相关文献

参考文献10

  • 1Schapire R.The Boosting approach to machine learning: An overview[M]//Nonlinear Estimation and Classification.Berkeley, CA, USA: Springer-Verlag, 2002.
  • 2董乐红,耿国华,高原.Boosting算法综述[J].计算机应用与软件,2006,23(8):27-29. 被引量:26
  • 3Yoav F, Schapire R E.A decision-theoretic generalization of on-line learning and an application to Boosting[J].Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119-139.
  • 4Duffy N, Helmbold D.Boosting methods for regression[J].Machine Learning,2002,47:153-200.
  • 5Buhlmann P, Hothom T.Boosting algorithms: Regularization, prediction and model fitting[J].Statistical Science, 2007, 22 (4): 477-505.
  • 6周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 7Wolpert D H.Stacked generalization[J].Neural Networks, 1992,5 (2) :241-259.
  • 8Jimenez D.Dynamically weighted ensemble neural networks for classification[C]//Proc the IEEE International Joint Conference on Neural Networks,Anchorage,AK,1998:753-756.
  • 9Vapnik V N.An overview of statistical learning theory[J].IEEE Trans on Neural Network, 1999,10(5) :988-999.
  • 10Opitz D, Maclin R.Popular ensemble methods: An empirical study[J].Journal of Artificial Intelligence Research, 1999, 11: 169-198.

二级参考文献6

共引文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部