期刊文献+

混合粒子群算法在job-shop动态调度中的应用 被引量:3

Application of hybrid PSO in job-shop dynamic scheduling problem
下载PDF
导出
摘要 提出了基于事件驱动的动态调度策略,以融合遗传算法的粒子群算法来实现作业车间生产调度,有很好的收敛精度;在此基础上,对作业车间生产调度中的工件增加及取消、机器故障等各种动态事件进行了研究,能在扰动后提供新的调度计划,有效地解决了车间动态调度的一致性和连续性的问题。 A new event-driven strategy of dynamic scheduling has been introduced in this paper.The particle swarm optimization which combining a genetic algorithm is used in the job shop scheduling, which has a good astringency.The dynamic events which concerning machine,job and examination have been researched in this paper and a new plan can be provided by part-renovating ,which can solve the problem of consistency and continuity in dynamic scheduling.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第26期219-222,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60774059~~
关键词 作业车间生产调度 粒子群算法 遗传算法 动态事件 job shop scheduling problem particle swarm optimization genetic algorithm dynamic events
  • 相关文献

参考文献6

二级参考文献58

  • 1李宏仲,金义雄,程浩忠,滕乐天,张丽,祝达康.基于改进粒子群优化算法并计及静态电压稳定性的电力系统无功规划[J].电网技术,2005,29(22):50-55. 被引量:30
  • 2宋锦河.基于模拟退火算法的生产调度问题[J].长春工程学院学报(自然科学版),2004,5(1):61-63. 被引量:10
  • 3苏玲,赵冬梅,韩静.电力系统无功优化算法综述[J].现代电力,2004,21(6):40-45. 被引量:26
  • 4方剑,席裕庚.基于遗传算法的 Job Shop 静态调度算法[J].上海交通大学学报,1997,31(3):49-52. 被引量:14
  • 5[1]Laurak Church,Reha Uzsoy. Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 1992,5(3):153~163
  • 6[2]Sun D,Lin L. A dynamic job shop scheduling framework: a backward approach. International Journal of Production Research,1994,32(4):967~985
  • 7[3]Jian Fang,Yugeng Xi. A rolling horizon jop shop rescheduling strategy in the dynamic environment. Advanced Manufacturing Technology,1997,13:227~232
  • 8[4]Monostori L,Kadar B,Hornyak J. Approaches to managing changes and uncertainties in manufacturing. Annals of the CIRP,1998,47(1):365~368
  • 9[5]Treleven M D,Elvers D A. An investigation of labor assignment rules in a dual resource constrained fob-shop. The Journal of Operation management,1985,6(1):51~68
  • 10[6]Treleven M D. A review of the dual-resource constrained system research. IIE Transactions,1989,21:279~287

共引文献215

同被引文献30

  • 1段海滨,王道波,于秀芬.蚁群算法的研究进展评述[J].自然杂志,2006,28(2):102-105. 被引量:31
  • 2刘志刚,李言,李淑娟.基于蚁群算法的Job-Shop多资源约束车间作业调度[J].系统仿真学报,2007,19(1):216-220. 被引量:20
  • 3Selim H, Araz C, Ozkarahan I. Collaborative production- distribution planning in supply chain: A fuzzy goal program- ming approach [ J ]. Transportation Research : Logistics and Transportation Review, 2008, 44(3) : 396-419.
  • 4Karakitsiou A, Migdalas A. A decentralized coordination mechanism for integrated production transportation inventory problem in the supply chain using Lagrangian relaxation [J]. Ooerational Research. 2008. 8(3): 257-278.
  • 5Wille E C G, Yabznski E, Lopes I-I S. Discrete capacity assignment in IP networks using particle swarm optimization [J]. Applied Mathematics and Computation, 2011, 217 (12) : 5338-5346.
  • 6Sun J, Xu F B, Xu W B. Particle swarm optimization with particles having quantum behavior [ EB/OL]. (2004-06- 19). http://ieeexplore, ieee. org/xpls/abs_all, jsp? arnum- ber = 1330875_tag = 1.
  • 7Liu J, Sun J, Xu W B. Quantum-behaved particle swarm optimization for integer programming [ J ]. Lecture Notes in Computer Science, 2006, 4233 : 1042-1050.
  • 8Sun J, Fang W, Wang D J, et al. Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method [ J ]. Energy Conversion and Management, 2009, 50 ( 12 ) : 2967- 2975.
  • 9Yuan H, Wang Y, Chen L. An availability-aware task scheduling for heterogeneous systems using quantum-be- haved particle swarm optimization [ M ]. Berlin: Springer- Berlin Heidelberg, 2010 : 120-127.
  • 10Henry, Lau Y K, Ying Z. Multi-objective genetic algo- rithms for scheduling mateiral handling equipment atautomated air cargo terminals[C]//Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. Singapore. IEEE Press, 2004,1 : 718-723.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部