期刊文献+

引入任务情景的服务发现方法 被引量:1

Task Circumstance Imported Service Discovery Method
下载PDF
导出
摘要 如何准确地发现目标服务是服务计算研究的关键问题。传统的服务发现方法由于没有考虑服务任务情景的适用性,查询精度仍有较大上升空间。基于此,提出包含任务情景的服务发现方法,以自定义本体论为基础,引入结构化概念实例模式来描述任务情景。实验数据表明,该方法提高了服务发现的精度。 The key problem in service computing domain is to find target service precisely. Due to not considering the compatibility of task circumstance, the precise of traditional service discovery method can be improved. This paper proposes a task circumstance imported service discovery method, which imports structured concept instance pattern to describe task circumstance. Experimental data shows that the proposed method outperforms others in terms of precision.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第17期10-12,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2003CB317005) 国家"863"计划基金资助项目(2007AA01Z187) 国家自然科学基金资助项目(60773177) 浙江省自然科学基金资助项目(Y1080366)
关键词 面向服务的计算 服务发现 本体论 任务情景 service oriented computing service discovery ontology task circumstance
  • 相关文献

参考文献4

二级参考文献9

  • 1Sajjanhar A,Hou Jingyu,Zhang Yanchun.Algorithm for Web Services Matching[C] //Proc.of Asia-pacific Web Conference.[S.l.] :Springer-Verlag,2004:665-670.
  • 2Klusch M.Automated Semantic Web Service Discovery with OWLS-MX[C] //Proc.of AAMAS'06.Hakodate,Hokkaido,Japan:[s.n.] ,2006.
  • 3Ma Jiangang.Web Services Discovery Based on Latent Semantic Approach[C] //Proc.Of IEEE International Conference on Web Services.[S.l.] :IEEE press,2008.
  • 4Shou Dong.A Clustering-based Approach for Assisting Semantic Web Service Retrieval[C] //proc.Of IEEE International Conference on Web Services.[S.l.] :IEEE press,2008.
  • 5OWL-S:Semantic Markup for Web Services[EB/OL].(2004-10-21).http:/www.w3.org/Submission/OWL-S/.
  • 6Paolucci M.Semantic Matching of Web Service Capabilities[C] // proc.Of the 1st IEEE International Semantic Web Conference.[S.l.] :IEEE press,2002.
  • 7Paliwal A V,Adam N R,Bornh(o)vd C.Web Service Discovery:Adding Semantics Through Service Request Expansion and Latent Semantic Indexing[C] //Proc.of 2007 IEEE International Conference on Services Computing.[S.l.] :IEEE Press,2007.
  • 8Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer Press,1995.
  • 9Salton G,Buckley C.Term-weighting Approaches in Automatic Text Retrieval[J].Information Processing & Management,1988,24(5):513-523.

共引文献6

同被引文献11

  • 1Brnsted J,Hansen K M,Ingstrup M. Service com-position issues in pervasive computing [J]. IEEE Per-vasive Computing? 2010? 9(1): 62-70.
  • 2Lecue F,Mehandjiev N. Seeking quality of web serv-ice composition in a semantic dimension [J], IEEETransactions on Knowledge and Data Engineering,2011,23(6) . 942-959.
  • 3Rao J,Su X. A survey of automated web servicecomposition methods [ C ] //Proceedings of the FirstInternational Conference on Semantic Web Services andWeb Process Composition. USA: Springer-Verlag,2004: 43-54.
  • 4Kuzu M,Cicekli N K. Dynamic planning approach toautomated Web service composition [J]. Applied In-telligence, 2012,36(1): 1-28.
  • 5Tao F, Zhang L, Lu K,et al. Research on manufac-turing grid resource service optima卜selection andcomposition framework [J]. Enterprise InformationSystems, 2012,6(2) : 237-264.
  • 6Xiong P C,Fan Y S, Zhou M C. A petri net ap-proach to analysis and composition of web services[J]. IEEE Transactions on Systems, Man and Cyber-netics. Part A: Systems and Humans,2010,40(2):376-387.
  • 7Zhang Y,Liu J, Tang Q, et al. Modeling web serv-ices composition with timed pi calculus [J]. Informa-tion Technology Journal, 2011? 10(6) : 1194-1200.
  • 8Jaeger M C,Rojec-Goldmann G,Muhl G. QoS ag-gregation for web service composition using workflowpatterns [C]//Enterprise Distributed Object Compu-ting Conference. Berlin: IEEE, 2004 : 149-159.
  • 9Hashemian S V,Mavaddat F. A graph-based frame-work for composition of stateless web services [C]//Proc of the European Conf on Web Services. Zurich,Switzerland, IEEE Computer Society, 2006 : 75-86.
  • 10赵艳丽,江志斌,李娜.基于分层赋时着色Petri网的临床路径建模[J].上海交通大学学报,2010,44(2):252-258. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部