期刊文献+

基于Q-强化学习的多Agent协商策略及算法 被引量:7

Strategy and Algorithm of Multi-Agent Negotiation Based on Q-reinforcement Learning
下载PDF
导出
摘要 针对传统Agent协商策略学习能力不足,不能满足现代电子商务环境需要的问题,采用Q-强化学习理论对Agent的双边协商策略加以改进,提出基于Q-强化学习的Agent双边协商策略,并设计实现该策略的算法。通过与时间协商策略比较,证明改进后的Agent协商策略在协商时间、算法效率上优于未经学习的时间策略,能够增强电子商务系统的在线学习能力,缩短协商时间,提高协商效率。 As lack of sufficient learning ability in traditional negotiation strategy of Agents, Agents' techniques are still unable to meet the needs of modern E-commerce. Aiming at this problem, Q-reinforcement learning theory is adapted to improve the bilateral negotiation strategy of Agents and the corresponding negotiation algorithm is designed to achieve the negotiation strategies. Comparing with the negotiation strategy of time strategy, the proposed Agent negotiation strategy is better than time strategy in terms of negotiation time and algorithm efficiency. It shows that algorithm can strengthen online learning ability of E-commerce system, shorten the negotiation time, and improve the negotiation efficiency.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第17期198-200,共3页 Computer Engineering
基金 广西省自然科学基金资助项目(0728089) 广西研究生教育创新计划基金资助项目(2009105950812M18)
关键词 Q-强化学习 多AGENT 协商策略 Q-reinforcement learning multi-Agent negotiation strategy
  • 相关文献

参考文献5

  • 1Stone P,Veloso M.Multi-Agent Systems:A Survey from a Machine Learning Perspective[J].Autonomous Robots,2000,8(3):345-383.
  • 2Watkins C,Dayan P.Q-learning[J].Machine Learning,1992,8(3):297-292.
  • 3张化祥,黄上腾.基于增强学习的代理谈判模型[J].计算机工程,2004,30(10):137-139. 被引量:7
  • 4Zeng Dajuan,Sycara K.Benefits of Learning in Negotiation[C] //Proc.of National Conference on American Association for Artificial Intelligence.Menlo Park,CA,USA:[s.n.] ,1997.
  • 5Sycara K P.Multi-agent Systems[J].AI Magazine,1998,19(2):79-90.

二级参考文献9

  • 1[1]Paurobally S,Cunning Barm J.Formal Models for Negotiation Using Dynamic Logic. In:Sierra C,Digmm F(Editors),Springer Verlag,2000
  • 2[2]Rubinstein A.Peffect Equilibrium in a Bargaining Model. Econometrica, 1982, 50, (I): 97-109
  • 3[3]Ausubel L M,Cramton P C,Deneckere R J.Bargaining with Incomplete Information. Handbook of Game Theory, Amsterdam: Elsevier Science B.V., 2001-03
  • 4[4]Cramton P C.Strategie Delay in Bargaining with Two-dided Uncertaihty. Review of Economic Studies, 1992,59:205-225
  • 5[5]Zeus. Agent Development Toolkit. http://www, labs.bt.com/pro jects/agents, htm, 2001
  • 6[6]Mictchill T M. Machine Learning. The McGraw-Hill Companies, Inc.,1997:367-386
  • 7[7]Sridharan M, Tesauro G. Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions. Proc. ICML-00, 2000
  • 8[8]Tesauro G, Kephart G O. Pricing in Agent Economies Using Multiagent Q-learning. Autonomous Agents and Multi-agent Systems.2002, (5):299-304
  • 9[9]Oliver J R. A Machine Learning Approach to Automated Negotiation and Prospects for Electronic Commerce. Journal of Management Information Systems, 1997, 13(3): 83-112

共引文献6

同被引文献55

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部