期刊文献+

基于外点检测与校正的填充射影分解算法

Filling Projective Decomposition Algorithm Based on Exterior Point Detection and Correction
下载PDF
导出
摘要 针对三维重构中存在的数据缺失和遮挡问题,提出可处理缺失数据的填充射影分解算法,利用子空间约束与对极几何约束进行矩阵拟合并填充缺失数据,通过奇异值分解得到射影运动与结构参数。为克服该算法对噪声和外点的敏感性,结合RANSAC算法和三角形法对其进行外点检测与校正。实验结果表明,加入外点校正后的算法可提高射影重构的鲁棒性,降低误差,具有较高的实用价值。 Aiming at the problems of data missing and occlusions in 3D reconstruction, this paper proposes a filling projective decomposition algorithm which can handle missing data. Sub-space and epipolar constraints are used to fit the measurement matrix and fill the missing data. The projective motion and structure are recovered by Singular Value Decomposition(SVD). To solve the problem that the method is sensitive to noise and exterior point, RANSAC algorithm and triangulation algorithm are employed to detect and correct the exterior point. Experimental results indicate that the algorithm can strengthen the robustness and reduce error for projective reconstruction through correcting the exterior point, and it has great application value.
作者 徐炯 王庆
出处 《计算机工程》 CAS CSCD 北大核心 2010年第17期228-231,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA01Z314) 国家自然科学基金资助项目(60873085) 新世纪优秀人才支持计划基金资助项目(NCET-06-0882)
关键词 射影重构 因式分解 外点检测与校正 projective reconstruction factorization exterior point detection and correction
  • 相关文献

参考文献7

  • 1Aaaes H,Fisker R,Astrom K,et al.Robust Factorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1215-1225.
  • 2Tang W K,Hung Y S.A Column-space Approach to Projective Reconstruction[J].Computer Vision and Image Understanding,2006,101(3):166-176.
  • 3Hartley R I,Zisserman A.Multiple View Geometry in Computer Vision[M].2nd ed.Cambridge,UK:Cambridage University,2004.
  • 4Martinec D,Pajdla T Structure from Many Perspective Images with Occlusions[C] //Proc.of the 7th European Conference on Computer Vision.London,UK:Springer-Verlag,2002.
  • 5Jacobs D W.Linear Fitting with Missing Data for Structure From Motion[J].Computer Vision and Image Understanding,2001,82(1):57-81.
  • 6Kim J K,Han J H.Outlier Correction from Uncelebrated Image Sequence Using the Triangulation Method[J].Pattern Recognition,2006,39(3):394-404.
  • 7罗三定,贺俊耀.基于SURF和KLT跟踪的图像拼接算法[J].计算机工程,2010,36(1):215-217. 被引量:12

二级参考文献7

  • 1陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 2Mikolajczyk K, Schmid C. Indexing Based on Scale Invariant Interest Points[C]//Proc. of the 8th IEEE International Conference of Computer Vision. Vancouver, Canada: IEEE Press, 2001: 525-531.
  • 3Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 4Bay H, Tuytelaars T, Van G L. SURF: Speeded up Robust Features[EB/OL]. (2006-02-05). http://www.vision.ee.ethz.ch/-surf/ eccv06.pdf.
  • 5Bay H, Ess A, Tuytelaars T, et al. Speeded-up Robust Features(SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 6Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 32(1): 511-518.
  • 7董瑞,梁栋,唐俊,鲍文霞,何韬.基于颜色梯度的图像特征点匹配算法[J].计算机工程,2007,33(16):178-180. 被引量:4

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部