期刊文献+

B样条在一些渐近组合问题中的应用 被引量:2

The applications of B-splines in some asymptotic combinatorial problems
原文传递
导出
摘要 本文考察了B样条函数及其导数的渐近性质,并给出了收敛阶;考察了经典Eulerian数和两类广义Eulerian数的渐近性质;给出了以Hermite多项式表示的细化Eulerian数的渐近形式.Carlitz等人利用中心极限定理得到Eulerian数渐近公式的逼近阶为43阶.利用样条方法,我们得到更为精确的逼近阶.将样条方法引入到组合数的渐近分析中,为离散对象的研究提供了一种新的分析方法. In this paper, the convergence order of the derivatives of B-splines is investigated. The asymptotic formulas for Eulerian numbers, refined Eulerian numbers and the coefficients of descent polynomials are obtained directly from the spline interpretations of these numbers. In terms of Hermite polynomials, the asymptotic representations of refined Eulerian numbers are also concluded. The asymptotic formulas for the Eulerian numbers Ad,k agree with the previously known results which were given by Carlitz et al., but the convergence order is more accurate. This paper also provides applications of B-splines in the asymptotic combinatorics.
作者 许艳 王仁宏
出处 《中国科学:数学》 CSCD 北大核心 2010年第9期863-871,共9页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:60373093 60533060 10801024 10726068 11071031) NSFC-广东联合基金(批准号:U0935004) 中央高校基本科研业务费专项资金资助项目
关键词 B样条 Eulerian数 细化Eulerian数 下降多项式 渐近逼近 B-splines, Eulerian numbers, refined Eulerian numbers, descent polynomials, asymptotic approximation
  • 相关文献

参考文献14

  • 1Sommerfeld A. Eine besondere anschauliche Ableitung des Gaussischen Fehlergesetzes. Verlag yon J A Barth Leipzig, 1904:848-859.
  • 2Curry H B, Schoenberg I J. On Polya frequency functions IV: The fundamental spline functions and their limits. J Anal Math, 1966, 17:71 107.
  • 3Unser M, Aldroubi A, Eden M. On the asympototic Convergence of B-spline Wavelets to Gabor Functions. IEEE Trans Inform Theo, 1992, 38:864-872.
  • 4Brinks R. On the convergence of derivatives of B-splines to derivatives of the Gaussian function. Comput Appl Math, 2008, 27:79-92.
  • 5de Laplace M. Oeuvres Completes, Vol. 7. Paris: reedite par Gauthier-Villars, 1886.
  • 6Foata D. Distribution Eulerienne et Mahoniennes sur le groupe des permutations. In: Aigner M, ed. Higher Combinatorics. Proceedings of the NATO Advanced Study Institute. Reidel: Dordrecht-Boston, 1976, 27-49.
  • 7Stanley R P. Eulerian partitions of a unit hypercube. In: Aigner M, ed. Higher Combinatorics. Proceedings of the NATO Advanced Study Institute. Reideh Dordrecht-Boston, 1977, 49.
  • 8Steingrimsson E. Permutation statistics of indexed permutations. European J Combin, 1994, 15:187-205.
  • 9Ehrenborg R, Readdy M, Steingrlmsson E. Mixed volumes and slices of the cube. J Combin Theory Ser A, 1998, 81: 121-126.
  • 10Bagno E. Kazhdan constants of some colored permutation groups. J Algebra, 2004, 282:205-231.

同被引文献60

  • 1许志强.多元样条与离散数学相关问题研究进展综述[J].数学进展,2007,36(3):257-267. 被引量:2
  • 2Carlitz L, Kurtz D C, Scoville R, et al. Asymptotic properties of Eulerian numbers. Z Wahrschein-lichkeitstheorie und Verw Geb, 1972, 23:47-54.
  • 3Babaub J, Witkin A P, Baudin M, et al. Uniqueness of Gaussian kernel for scale-space filtering. IEEE Trans Pattern Anal Mach Intell, 1986, 8:26-33.
  • 4Poggio T A, Torre V, Koch C. Computational vision and regularization theory. Nature, 1985, 317:314-319.
  • 5Young R A. The Gaussian derivative model for machine vision: Visual cortex simulation. Technical Report GMR-5323, General Motors Research Laboratories. J Opt Soc Amer A, 1987.
  • 6Chen L H Y, Goodman T N T, Lee S L. Asymptotic normality of scaling function. SIAM J Math Anal, 2004, 36: 323-346.
  • 7Wang Y P, Lee S L. Scale-space derived from B-spline. IEEE Trans Pattern Anal Mach Intell, 1998, 20:1040-1055.
  • 8Temme N M. Polynomial asymptotic estimates of Gegenbauer, Laguerre, and Jacobi polynomials. In: Lecture Notes in Pure and Applied Mathematics, vol. 124. New York: Marcel Dekker, 1990:455-476.
  • 9L6pez J L, Temme N M. Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomiMs. Proc Roy Soc Edinburgh Sect A, 2004, 134:537-555.
  • 10Temme N M. Asymptotic estimates for Laguerre polynomials. Z Angew Math Phys, 1990, 41:114-126.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部