期刊文献+

基于不可行度和内分泌原理的多目标粒子群方法

Multi-objective PSO based on infeasibility degree and principle of endocrine
下载PDF
导出
摘要 针对有约束条件的多目标优化问题,提出了一种求解带约束的基于内分泌思想的多目标粒子群算法。利用不可行度方法和约束主导原理指导进化过程中精英种群的选择操作和约束条件的处理,根据生物体激素调节机制中促激素和释放激素间的相互作用原理,考虑当前非劣解集中的个体对其最邻近的一类群体的监督控制,引入当前粒子的类全局最优位置来反映其所属类中最好位置粒子对当前粒子的影响。为验证多目标约束优化算法的有效性,对两个典型的多目标优化问题进行了仿真实验,仿真结果表明该算法能较大概率地获得多目标约束优化问题的可行Pareto最优解。 For multi-objective optimization problems with constraint,a new Particle Swarm Optimization(PSO) algorithm for multi-objective with constraint was proposed.In the method,the constraints and the selection for elite swarm were disposed by infeasibility degree and domain principle.According to the control and supervised principle between Simulation Hormone(SH) and Releasing Hormone(RH) in endocrine system,and considering the supervision and control of individual in the non-dominated set for the nearest class of swarm,the global optimization position of class was used to generate the new position for particles.In order to verify the effectiveness of the given method,two benchmark multi-objective problems were simulated by the given method,NSGA-II and MOPSO-CD.The results indicate that the given method can find feasible Pareto solutions with a large probability.
出处 《计算机应用》 CSCD 北大核心 2010年第7期1885-1888,共4页 journal of Computer Applications
基金 安徽省自然科学基金资助项目(090412070) 高等学校省级优秀青年人才基金重点项目(2009SQRZ088ZD) 高等学校省级优秀青年人才基金资助项目(2010SQRL081) 安徽省高等学校省级自然科学研究项目(KJ2009B062)
关键词 不可行度 内分泌系统 粒子群优化 促激素 释放激素 InFeasibility Degree(IFD) endocrine system Particle Swarm Optimization(PSO) Stimulation Hormone(SH) Releasing Hormone(RH)
  • 相关文献

参考文献15

  • 1DEB K.Multi-objective optimization using evolutionary algorithms[M].Chichester,UK:John Wiley and Sons,2001.
  • 2王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116
  • 3郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 4RICHE R G,LENOIR K C,HAFTKA R T.A segregated genetic algorithm for constrained structural optimization[C] // Proceedings of the 6th International Conference on Genetic Algorithms.San Francisco:Morgan Kaufman Publishers,1995:558-565.
  • 5HUANG F,WANG L,HE Q.An effective co-evolutionary differential evolution for constrained optimization[J].Applied Mathematics and Computation,2007,186(1):340-356.
  • 6RASHEED K.An adaptive penalty approach for constrained genetic algorithm optimization[C] // Proceedings of the 3rd Annual Conference on Genetic Programming.San Francisco:Morgan Kaufmann Publishers,1998:584-590.
  • 7HOMAIFAR A,LAI SHY,QI X.Constrained optimization via genetic algorithms[J].Simulation,1994,62(4):242-254.
  • 8蒋程涛,邵世煌.基于适配粒子群的多目标优化方法[J].计算机工程,2007,33(21):175-178. 被引量:8
  • 9DEB K,PRATAP A,MEYARIVAN T.Constrained test problems for multi-objective evolutionary optimization[C] // Proceedings of the 1st International Conference on Evolutionary Multi-criterion Optimization.London:Springer-Verlag,2001:284-298.
  • 10DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

二级参考文献51

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2Zitzler E, Laumanns M, Bleuler S. A tutorial on evolutionary multiobjective optimization. In.. Srensen K, Gandibleux X, Sevaux M, et al. ed. Meta-heuristics for Multiobjective Optimization. Lecture Notes in Economics and Mathematical Systems, Sprnger, 2004,35 : 3-37
  • 3Coello C A C. An Updated survey of evolutionary multiobjective optimization techniques: State of the art and future trends. In: Proceedings of the 1999 Congress on Evolutionary Computation, Washington D C,1999. 3-13
  • 4Rosenberg R S. Simulation of genetic populations with biochemical properties:[PhD thesis]. Ann Harbor, Michigan: University of Michigan, 1967
  • 5David S J. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, 1985.93-100
  • 6Coello C A C. Twenty Years of Evolutionary Multi-objective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 2006,1 (1) : 28-36
  • 7Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multi-objective Optimization[J].Evolutionary Computation, 1995, 3(1):1-16
  • 8Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, Massachusetts: Addison-Wesley Publishing Company, 1989
  • 9Fonseca C M, Fleming P J. Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generalization. In: Forrest S,ed. oceedings of the Fifth International Conference on Genetic Algorithms, pages San Marco, California, 1993. 416-423
  • 10Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1994,2(3):221-248

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部