期刊文献+

修正核函数模糊聚类算法 被引量:2

Fuzzy clustering algorithm with modified kernel functions
下载PDF
导出
摘要 应用核函数度量的紧致性和分离性,给出了一种新的聚类有效性指标KKW,由KKW指标得到最优聚类数并用于修正核函数模糊聚类算法(MKFCM),由于经过了修正核函数的映射,使原来没有显现的特征突显出来。用MKFCM对Wine和glass数据集进行聚类,每一类的聚类正确度大于90%;对于缺失数据的Wisconsin Breast Cancer数据,错分率为4.72%。该聚类方法在性能上比经典聚类算法有所改进,具有更快的收敛速度以及较高的准确度。仿真实验的结果证实了修正核聚类方法的可行性和有效性。 Using kernelized metric of compactness and separation,this paper proposed a new clustering validity index named KKW,and obtained the optimized cluster number.Besides,the KKW index was used in the modified kernel fuzzy clustering(MKFCM) algorithm.As mapped by modified Mercer kernel functions,the data set shows new features never showed before.MKFCM algorithm was applied to the data set Wine and glass.For every clustered class,MKFCM has overall accuracy higher than 90%;as to the incomplete data set Wisconsin Breast Cancer,difference is 4.72%.The modified kernel clustering algorithm is faster than the classical algorithm in convergence and more accurate in clustering.The results of simulation experiments show the feasibility and effectiveness of the modified kernel clustering algorithm.
出处 《计算机应用》 CSCD 北大核心 2010年第7期1926-1929,共4页 journal of Computer Applications
基金 黑龙江省教育厅科学技术研究项目(11544048)
关键词 模糊C均值算法 模糊聚类 核函数 有效性指标 聚类个数估计 Fuzzy C-Mean(FCM) algorithm fuzzy clustering kernel function validity index clusters number estimation
  • 相关文献

参考文献17

  • 1AMARI S,WU S.Improving support vector machine classifiers by modifying kernel functions[J].Neural Networks,1999,12(6):783-789.
  • 2李红英,钟波.支持向量分类机的修正核函数[J].计算机工程与应用,2009,45(24):53-55. 被引量:6
  • 3潘庆丰,陈水利,陈国龙.基于核函数的模糊C均值聚类算法[J].集美大学学报(自然科学版),2006,11(4):369-374. 被引量:5
  • 4FILIPPONE M,CAMASTRA F,MASULLI F,et al.A survey of kernel and spectrum methods for clustering[J].Pattern Recognition,2008,41(1):176-190.
  • 5LOONEY C G.Fuzzy connectivity clustering with radial basis kernel functions[J].Fuzzy Sets and Systems,2009,160(13):1868-1885.
  • 6XU R,WUNSCH D.Survey of clustering algorithms[J].Neural Networks,2005,14(3):645-678.
  • 7LEE M,PEDIYCZ W.The fuzzy C-means algorithm with fuzzy P-mode prototypes for clustering objections having mixing features[J].Fuzzy Sets and Systems,2009,24(16):3590-3600.
  • 8WU K L,YANG M S,A Cluster Validity index for fuzzy clustering[J].Pattern Recognition Letters,2005,26(9):1275-1291.
  • 9BAZDEK J C.Cluster validity with fuzzy sets[J].Journal of Cybernetics,1974,3(3):58-73.
  • 10BAZDEK J C.Numerical Taxonomy with fuzzy sets[J].Journal of Mathematical Biology,1974,1(1):57-71.

二级参考文献25

  • 1Wu S,Amari S.Conformal transformation of kernel functions:A data-dependent way to improve support vector machine classifiers[J]. Neural Processing Letters, 2001 (15) : 59-67.
  • 2Shen Rui-min,Fu Yong-gang.Modifications of kernels to improve support vector machine classifiers[C]//Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, August 2004: 26-29.
  • 3Amari S,Wu S.Improving support vector machine classifiers by modifying kernel funetions[J].Neural Networks, 1999(12) : 783-789.
  • 4侯伟真.高斯核支持向量机最优模型参数选择搜索算法[C]//中国运筹学会第八届学术交流会论文集,2006:716-722.
  • 5SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 6李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7Bezdek J C,Ehrlich R,Full W.FCM:the Fuzzy c-Means clustering algorithm[J].Computers and Gosciences,1984(10):191-203.
  • 8Wu K L,Yang M S.Alternative c-means clustering algorithms[J].Pattern Recognition,2002,35(10):2 267-2 278.
  • 9Yang M S.On a class of fuzzy classification maximum likelihood procedures[J].Fuzzy Sets and Systems,1993,57(3):365-375.
  • 10Krishnapuram R,Keller J M.A possibilistic approach to clustering[J].IEEE Trans on Fuzzy Systems,1993,1(2):98-110.

共引文献8

同被引文献26

  • 1赵亚琴,周献中,何新,王建宇.一种有效的高属性维稀疏数据聚类算法[J].模式识别与人工智能,2006,19(3):289-294. 被引量:6
  • 2王超,姜威.基于K近邻加权的混合C均值聚类算法[J].计算机工程与应用,2006,42(30):84-87. 被引量:2
  • 3Shao Bin, Xin Hongwei. A real-time computer vision assessment and control of thermal comfort for group-housed pigs [ J ]. Computer and E- lectronics in Agriculture, 2008,62( 1 ) :15 -21.
  • 4Wang ZQ. Geo-statistics and Its Application in Ecology[ M ]. Beijing: Science Press, 1999.
  • 5Wu Y, et al. Brain MRI segmentation using KFCM and Chan-Vese model[ M ]. Transactions of Tianjin University, Springer, 2011,17 : 215 -219.
  • 6曲福恒,崔广才,李岩芳,等.模糊聚类算法及其应用[M].北京:国防工业出版社.2011:68-71.
  • 7Hidetomo Ichihashi, Katsuhiro Honda. FCM Clustering from the View Point of Iteratively Reweighted Least Squares[ C]. IEEE International Conference on Fuzzy Systems, 2005:873 -878.
  • 8Tara Saikumar, Anoop BK, Murthy PS. Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image segmentation [J]. Computer Science & Information Technology (CS & IT) ,2012: 99 - 103.
  • 9Ortega R A, Santibanez 0 A. Determination of management zones in corn based on soil fertility [ J ]. Computers and Electronics in Agricul- ture,2007 (58) :48-59.
  • 10FU A W, KWONG W, FU R, et al. Mining N-most interesting itemsets[J]. Methodologies for Intelligent Systems, 2000, 12(4): 41 -48.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部