期刊文献+

驾驶疲劳脑电信号的双谱特性分析 被引量:3

Bispectrum analysis on EEG for driving fatigue
下载PDF
导出
摘要 基于脑电信号的非高斯、非线性特性,采用非常有效的双谱分析方法来分析驾驶过程中的脑电信号。首先将驾驶2小时的脑电数据按一定的时间间隔分为6段,然后利用自回归(AR)模型双谱分析方法分析这些信号,研究不同时刻这些信号双谱结构的变化。分析结果显示,驾驶不同时刻的脑电双谱结构有很大差异,表明双谱分析方法有望成为驾驶疲劳检测的一个指标。 The bispectrum was used to analyze the electroencephalography(EEG) of drivers in the process of driving based on the fact that bispectrum is suitable for the signals of EEG that possess non-Gaussian and nonlinear properties.The two-hour signals were divided into six sections at a certain time interval,which were analyzed by using the Auto-Regressive(AR) parameter model method to estimate bispectrum.The results show the bispectrum of EEG are very different at different times,so bispectrum can be used for the detection of driving fatigue.
出处 《计算机应用》 CSCD 北大核心 2010年第7期1967-1969,1973,共4页 journal of Computer Applications
基金 陕西省自然科学基础研究计划项目(2009JM8018) 陕西师范大学校级优秀预研项目(200802019) 陕西师范大学2010年研究生培养创新基金项目(2010CXS011) 中央高校基本科研业务费专项资金重点资助项目(GK200901006)
关键词 脑电图学 双谱 驾驶疲劳 疲劳时间 疲劳特性 electroencephalography(EEG) bispectrum driving fatigue fatigue time fatigue characteristics
  • 相关文献

参考文献7

  • 1如何减轻驾驶疲劳[EB/OL].[2009-08-31].http://www.xzjgw.com/html/school/guide/20090831/7665.html.
  • 2王炳浩,魏建勤,吴永红.汽车驾驶员瞌睡状态脑电波特征的初步探索[J].汽车工程,2004,26(1):70-72. 被引量:38
  • 3颜松,魏建勤,吴永红.汽车驾驶员瞌睡状态脑电波特征提取的研究[J].中国生物医学工程学报,2005,24(1):110-113. 被引量:16
  • 4彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589. 被引量:42
  • 5KOCUR D,STSNKO R.Order bispectrum:A new tool for reciprocated machine condition monitoring[J].Mechanical Systems and Signal Processing,2002,14(6):871-890.
  • 6SIMONOVSKI I,BOLTEZAR M,GRADISEK J.Bispectral analysis of the cutting process[J].Mechanical Systems and Signal Processing,2002,16(6):1093-1104.
  • 7ZHANG J,ZHENG C.Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method[J].IEEE Transactions on Biomedical Engineering,2000,47(3):352-359.

二级参考文献25

  • 1李昌吉.汽车驾驶员的人为因素与交通安全[J].疾病控制杂志,2004,8(6):576-578. 被引量:21
  • 2顾凡及,宋如垓,王炯炯,范思陆,阮炯.不同状态下脑电图复杂性探索[J].生物物理学报,1994,10(3):439-445. 被引量:16
  • 3颜松,魏建勤,吴永红.汽车驾驶员瞌睡状态脑电波特征提取的研究[J].中国生物医学工程学报,2005,24(1):110-113. 被引量:16
  • 4董国平 郑崇勋 马建青.不同睡眠期脑电图复杂波的研究[J].北京生物医学工程,1999,18(4).
  • 5Eisaku Akutsu. Summary of Driver's Drowsiness Sensing Technology [ J ]. Automobile Technology(Japan), 1995, 49 (7).
  • 6Idogawa K, Ninomlja SP, Yano F. A Time Variation of Professional ,Driver's EEG in Monotonous Work [ C ]. IEEE Engineering In Medicine&Biology Society 11^th Annual International Conference,1989,6:719 - 720.
  • 7Kazuyoshi Yajima, Kenji Ikeda, and Masamitsu Oshima, Tokio Sugi.Fatigue in Automobile Drivers Due to Long Time Driving[ C ]. SAE760050.
  • 8Jean Christophe POPIEUL, Philippe SIMON and Pierre LOSLEVER.Using Driver's Head Movements Evolution as a Drowsiness Indicator[C]. IEEE Intelligent Vehicles Sympesium,2003,6:616- 621.
  • 9Milosevic S. Drivers' fatigue studies[J]. Ergonomics, 1997;40(3):381 - 389.
  • 10David J. King, Gunter P. Slegmund, and Darcy T. Montgomery.Outfitting a Freighfliner Tractor for Measuring Driver Fatigue and Vehicle Kinematics During Closed-Track Testing[ C ]. SAE 942326.

共引文献83

同被引文献29

  • 1段建平,董燕.汉语儿童英语阅读障碍者大脑两半球功能特征的变化[J].中国康复,2007,22(1):23-25. 被引量:2
  • 2金熬.中国是每年因车祸死亡人数最多的国家[EB/OL][2011-10-11 ]. http://www, maoflag, net/bbs/viewthread. php? rid= 1554677amp; page= lamp; authorid= 28180.
  • 3BROOKHUIS K A, DEWAARD D. The use of psychophysiol- ogy to assess drive status[J]. Eigonomies, 1993, 36(9): 1099- 1110.
  • 4JAP B T, LAL S, FISCHER P, et al. Using EEG spectral components to assess algorithms for detecting fatigue[J]. Ex- pert Syst Appl, 2009, 36(2 PART I): 2352-2359.
  • 5MURATA A, TAKASAWA Y. Evalution of mental fatigue u- sing feature parameter extracted from event-related potential [J]. International Journal of Industrial Eigonomics, 2005, 35 (8) : 761-770.
  • 6FISCH B J. Spehlmann's EEG primer[M]. 2rot ed. Amster- dam: Elsevier Science Ltd, 1991.
  • 7彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589. 被引量:42
  • 8Jansen B H, Allam A, Kota P, et al. An exploratory study of factors affecting single trial P300 detection[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 975-978.
  • 9Blankertz B, Muller K R, Krusienski D J, et al. The BCI competition III: validating alternative approaches to actual BCI problems [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 153-159.
  • 10Costagliola S, Seno B D, Matteucci M. Recognition and classification of P300s in EEG signals by means of feature extraction using wavelet decomposition[C]//Proceedings of International Joint Conference on Neural Networks. Atlanta, USA: IEEE Computer Society, 2009: 597-603.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部