期刊文献+

基于结构化属性集的规则学习

Rule learning algorithm based on structured attribute set
下载PDF
导出
摘要 提出了从结构化属性的背景中学习关联规则的通用算法,该算法使用过滤函数检查频繁概念,只需修改该函数,就可得到各种基于概念的规则。该算法的优点是在计算过程中利用属性结构化消除频繁概念中的冗余内涵,使得到的规则更精炼、更实用。 An algorithm with a filter function which exploring frequent concepts in a context was proposed with structured attributes in order to learn association rules.Simply changing the function that algorithm could compute various kinds of concept-based rules.The advantage of the presented method is to avoid the redundancy in the intent of the computed frequent concepts with the help of structured attributes.The resulted rules are therefore more concise and practical.
作者 时百胜
出处 《计算机应用》 CSCD 北大核心 2010年第8期2010-2012,2028,共4页 journal of Computer Applications
关键词 形式背景 结构化属性 频繁概念 关联规则 formal context structured attribute frequent concept association rule
  • 相关文献

参考文献5

  • 1GANTER B,WILLE R.Formal concept analysis-mathematical foundations[M].Berlin:Springer-Verlag,1999.
  • 2KUZNETSOV S O.Machine learning and formal concept analysis[C] // Proceedings of the 2nd International Conference on Formal Concept Analysis.Berlin:Springe-Verlag,2004:287-312.
  • 3Witten IH,Frank E.数据挖掘实用机器学习技术[M].2版.北京:机械工业出版社.2006:126-324.
  • 4ZAKI M J.Mining non-redundant association rules[J].Data Mining and Knowledge Discovery,2004,9(3):223 -248.
  • 5BAADER F,KUSTERS R,MOLTTOR R.Computing least common subsumers in description logics with existential restrictions[C] // Proceedings of the 16th International Joint Conference on Artificial Intelligence.San Francisco,CA:Morgan Kaufmann.1999,1:96 -101.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部