期刊文献+

基于字词分类的层次分词方法 被引量:2

Method of Chinese word segmentation based on character-word classification
下载PDF
导出
摘要 中文分词是自然语言处理的基础性问题。条件随机场模型分词过程中出现的切分粒度过小和多字粘连造成的错分问题,是影响分词结果的两个主要原因。提出了一个基于字词分类的层次分词模型,该模型采用多部有效词典进行处理,在外层分词系统中解决切分粒度过小问题;在内层核心层,条件随机场分词后再处理多字粘连问题。实验结果表明,采用加入多词典的字词结合层次分类模型F-测度值有较大的提高,有助于得到好的分词结果。 Chinese Word Segmentation CWS is the basic problem of natural language processing.A joint characterword classification model for Chinese Word Segmentation was presented which mainly dealt with the problem of Conditional Random Field CRF.On the one hand the majority of errors in CRF caused by fine granularity were figured out in outsidelayer of the model.On the other hand excessive linked words caused by improper segmentations that were settled in core inside-layer.The experimental results show that the value of F is greatly improved and the good results of word segmentation are easily gained by choosing the hierarchical word segmentation model based on character word classification.
出处 《计算机应用》 CSCD 北大核心 2010年第8期2034-2037,共4页 journal of Computer Applications
基金 河南省基础与前沿技术研究计划项目(092300410152) 河南省高等学校青年骨干教师资助计划项目 河南省科技攻关项目(2007520026)
关键词 中文分词 字词分类 多词典分词 条件随机场 Chinese Word Segmentation CWS character word classification multi-dictionary cws Conditional Random Field CRF
  • 相关文献

参考文献9

  • 1黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:250
  • 2杨尔弘,方莹,刘冬明,乔羽.汉语自动分词和词性标注评测[J].中文信息学报,2006,20(1):44-49. 被引量:16
  • 3ZHANG R Q,KIKUI G,SUMITA E.Subword-based tagging by conditional random fields for chinese word segmentation[C] // Proceedings of the Human Language Technology Conference of the NAACL.Morristown,NJ:Association for Computational Linguistics,2006,1:193-196.
  • 4GEISS J.Creating a gold standard for sentence clustering in multidocument summarization[C] // Proceedings of the ACL-UCNLP 2009 Student Research Workshop.Morristown,NJ:Association for Computational Linguistics,2009,1:96 -104.
  • 5LAFFERTY J,MCCALLUM A,PEREIRA F.Conditional random field:Probabilistic models for segmenting and labeling sequence data[C] // Proceedings of ICML 2001.San Fransisco:Morgan Kaufmann,2001,1:591 -598.
  • 6朱颢东,钟勇.基于贝叶斯粗糙集的文本特征选择方法[J].河南师范大学学报(自然科学版),2009,37(4):31-35. 被引量:3
  • 7XU J,GAO J F,TOUTANOVA K,et al.Bayesian semi-supervised chinese word segmentation for statistical machine translation[C] // Proceedings of COUNG 2008.Manchester:[s.n] ,2008,2:1017 -1024.
  • 8XUE N W,SHEN L B.Chinese word segmentation as LMR tagging[EB/OL].[2009-12-13].http://www.ldc.upenn.edu/acl/W/ W03/W03-1728.pdf.
  • 9PENG F C,FENG F F,MCCALLUM A.Chinese segmentation and new word detection using conditional random field[C] // Proceedings of the 20th International Conference on Computational Linguistics.Morristown,NJ:Association for Computational Linguistics,2004,1:562 -568.

二级参考文献22

共引文献260

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部