期刊文献+

具有更好适应性的间距最大化特征加权

Margin maximization feature weighting with better adaptability
下载PDF
导出
摘要 间距最大化特征选择技术是一种有效的维数约减技术,一般是基于加权技术和相似性度量构造目标函数。不足之处是针对不同数据集,适应性有待提高。为此,引入一个具有更好适应性的度量(称为分离度)和模糊加权技术构造新目标函数。利用模拟数据集和基准数据集进行仿真,实验结果表明该方法具有良好的适应性。 Margin maximization feature weighting is an effective dimension reduction technique, and it is generally based on weighting techniques and similarity measure to construct their objective functions. One of the weaknesses is that the adaptability is not enough due to the complexity of different datasets. Therefore, the better adaptive margin metric ( named separation) and the fuzzy weighting technique were introduced for developing the new optimal objective function. As demonstrated by the authors' experimental studies in synthetic datasets and benchmark datasets, the proposed algorithm is more adaptive.
出处 《计算机应用》 CSCD 北大核心 2010年第9期2275-2278,2289,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60903100) 江苏省自然科学基金资助项目(BK2009067)
关键词 特征选择 特征加权 分离度 间距最大化原则 适应性 feature selection feature weighting separation margin maximization principle adaptability
  • 相关文献

参考文献10

  • 1KIRA K, RENDELL L A. A practical approach to feature selection [C]// Proceedings of the 9th International Workshop on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1992: 249- 256.
  • 2KONONENKO I. Estimating attributes: Analysis and extensions of RELIEF [ C]//European Conference on Machine Learning. Catania, Italy: Springer, 1994:171-182.
  • 3ROBNIK M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RreliefF [J]. Machine Learning, 2003, 53( 1/2): 23 - 69.
  • 4GILAD-BACHRACH R, NAVOT A, TISHBY N. Margin based feature selection-theory and algorithms [ C]// Proceedings of the 21st International Conference on Machine Learning. Alberta, Canada: ACM Press, 2004:337 -344.
  • 5SUN Y J. Iterative RELIEF for feature weighting: Algorithms, theories, and applications [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6) : 1035 - 1051.
  • 6BEZDEK J C. Convergence theory for fuzzy c-means: Counter example and repairs [ J]. IEEE Transactions on System, Man and Cybernetics, 1987, 17(4) : 873 -877.
  • 7KOHAVI R, JOHN G H. Wrapper for feature subset selection [ J]. Artificial Intelligence, 1997, 97( 1/2): 273-324.
  • 8CHEN B, LIU H W, CHAI J, et al.Large margin feature weighting method via linear programming [ J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10) : 1475 - 1488.
  • 9SUN Y J, LI J. Iterative RELIEF for feature weighting [ C]// Proceedings of the 23rd International Conference on Machine Learning. Pennsylvania, USA: ACM Press, 2006:913-920.
  • 10GUYON I, ELISSEEFF A. An introduction to variable and feature selection [ J]. Journal of Machine Learning Research, 2003, 3 ( 1 ) : 1157 - 1182.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部