期刊文献+

数据流分类中的增量特征选择算法 被引量:5

Incremental feature selection algorithm for data stream classification
下载PDF
导出
摘要 概念流动的出现及数据的高维性增加了数据流特征选择的复杂性。信息增益是最有效的特征选择算法之一,但计算量大。对信息增益做了等价替换,提出一种基于改进信息增益的混合增量特征选择(IFS)算法。该算法首先利用与分类器无关的评价函数选出候选特征集合,然后将分类器作用于候选特征集合,利用分类精度作为评价标准去选择特征子集,在遇到概念漂移时重新选择特征子集。通过在超平面数据集和UCI数据集上的实验,表明基于IFS算法的分类器能够很快地适应概念漂移,并且比基于全部特征的分类算法有更高的精度。 The complexity of feature selection for real-world data stream will increase because of high-dimensional data and concept drifting. Information gain is one of the most effective feature selections, but its computation is too huge. In order to deal with the problem, the authors proposed an incremental feature selection algorithm based on improved information gain, named IFS. Firstly, the algorithm selected candidate feature set by using independent evaluation function; secondly, feature set was selected with classifer role in candidate feature set. Finally, it selected feature set again while encountering concept drifting. The experiment was operated on moving hyperplane data set and UCI data set. The experimental results show that the proposed approach can adapt to the concept drifting with higher speed and works much better than non-feature selection algorithms.
出处 《计算机应用》 CSCD 北大核心 2010年第9期2321-2323,2328,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873196)
关键词 数据流分类 信息增益 增量特征选择 概念漂移 data stream classification information gain Incremental Feature Selection ( IFS) concept drifting
  • 相关文献

参考文献11

  • 1GERHARD W, MIROSEAV K. Learning in the presence of concept drift and hidden contexts [J]. Machine Learning, 1996, 23(1) : 69 -101.
  • 2陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 3YUE XUN, MO HONGWEI, CHI ZHONGXIAN. Immune-inspired incremental feature selection technology to data streams [ J]. Applied Soft Computing, 2008, 8(2): 1041-1049.
  • 4KATAKIS I, TSOUMAKAS G, VLAHAVAS I P. On the utility of incremental feature selection for the classification of textual data streams [ C]//PCI 2005: Proceedings of the 10th Panhellenic Conference on Informatics, LNCS 3746. Berlin: Springer, 2005: 338- 348.
  • 5KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Dynamic feature space and incremental feature selection for the classification of textual data streams [ C]// European Conference on Machine Learning/ Practice of Knowledge Discovery in Databases - 2006 International Workshop on Knowledge Discovery from Data Streams. Berlin: [ s.n.], 2006: 107-116.
  • 6LIU H, YU L. Towards integrating feature selection algorithms for classification and clustering [ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502.
  • 7PARK J S, SHAZZAD K M, KIM D S. Toward modeling lightweight intrusion detection system through correlation-based hybrid feature selection [ C]//CISC 2005: Proceedings of the First SKLOIS Conference on Information Security and Cryptology, LNCS 3822. Berlin: Springer, 2005:279 - 289.
  • 8YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization [ C]//Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco, CA: Motgan Kanfmann Publishers, 1997:412 -420.
  • 9HAN JIAWEI, MICHELINE K. Data mining concepts and techniques [ M]. 2nd ed. Beijing: China Machine Press, 2007.
  • 10LI FEIXIONG, LIU QUAN. An improved algorithm of decision trees for stream data based on VFDT [ C]//2008 International Symposium on Information Science and Engineering. Shanghai: [ s. n. ], 2008:597-600.

二级参考文献1

共引文献77

同被引文献56

  • 1赵欣欣,索红光,刘玉树.基于标记窗的网页正文信息提取方法[J].计算机应用研究,2007,24(3):144-145. 被引量:33
  • 2富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86-91. 被引量:5
  • 3Widmer G Kubat M. Learning in the presence of concept drift and hidden contexts.Machine Learning,1996,23(l): 69-101.
  • 4Tsymbal A, Pechenizkiy M, Cunningham P, et al. Dynamic integration of classifiers for handling concept drift. Information Fusion, 2008,9(1):56-68.
  • 5Hanen LK, Salamon E Neutral network ensemble. IEEE Trans. on Pattern Anaylsis and Machine Intelligence, 1990, 12(10):993 -1001.
  • 6Street W, Kim Y, A streaming ensemble algorithm (SEA) for large-scale classification. Proc. of 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD-2001. New York: ACM Press, 2001:77-382.
  • 7Wang H, Fan W, Yu P, et al. Mining concept drifting data streams using ensemble classifiers. Proc. of 9th International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003:226-235.
  • 8Agrawal R, Gehrke J, Gunopulos, et al. Automatic subspace clustering of high dimensional data for data mining applications. Proc. of ACM SIGMOD Conference on Management of Data, New York: ACM Press, 1998.94-105.
  • 9Yang Q, Wu X. 10 Challenging problems in data mining research. Journal of Information Technology and Decision Making, 2006,5(4):597-604.
  • 10Guo G Wang H, Bell DA, et al, Using KNN Model for Automatic Text Categorization. Soft Computing. 2006, 10(5):423-430.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部