期刊文献+

基于项集优化重组的频繁项集发现算法 被引量:2

Algorithm for discovering frequent item sets based on optimized and regrouped item sets
下载PDF
导出
摘要 发现频繁项集是关联规则挖掘的主要途径,也是关联规则挖掘算法研究的重点。关联规则挖掘的经典Apriori算法及其改进算法大致可以归为基于SQL和基于内存两类。为了提高挖掘效率,在仔细分析了基于内存算法存在效率瓶颈的基础上,提出了一种发现频繁项集的改进算法。该算法使用了一种快速产生和验证候选项集的方法,提高了生成项目集的速度。实验结果显示该算法能有效提高挖掘效率。 Discovering frequent item sets is the main way of association rules mining, and it is also the focus of the study in algorithms for association rules mining. The classical Apriori algorithm and its improved algorithms of association rules mining can be generally classified as one based on SQL and the other based on memory. To improve the data-mining efficiency, the authors proposed an efficient algorithm for discovering frequent item sets. After analyzing the efficiency bottlenecks in some algorithms based on memory, the algorithm used a method that could generate and test candidate item sets efficiently to optimize the speed of item sets generation. The experimental results show that the proposed algorithm can assuredly improve the mining efficiency.
作者 王明 宋顺林
出处 《计算机应用》 CSCD 北大核心 2010年第9期2332-2334,共3页 journal of Computer Applications
基金 江苏省产业信息化重点基金资助项目(1633000004)
关键词 数据挖掘 频繁项集 项集数组 逻辑运算 关联规则 data mining frequent item set item sets array logic operation association rule
  • 相关文献

参考文献8

二级参考文献53

  • 1彭广川,李颖.数据挖掘的常用分析方法与算法研究[J].电脑知识与技术,2005(10):5-7. 被引量:2
  • 2Ceglar A, Roddick J F. Association Mining[J]. ACM Computing Surveys, 2006,38 (2) : 1 - 42.
  • 3Lee Y C, Hong T P, Lin W Y. Mining Association Rules with Multiple Minimum Supports Using Maximum Constraints[J]. International Journal of Approximate Reasoning, 2005,40(1 - 2) : 44 - 54.
  • 4Yang L. Pruning and Visualizing Generalized Association Rules in Parallel Coordinates [J]. IEEE Transaction on Knowledge and Data Engineering, 2005,17(1) :60- 70.
  • 5Pasquier N, Bastide Y, Taouil R, et al. Discovering Frequent Closed Itemsets for Association Rules[ C]//Proceedings of the 7th International Conference Database Theory. London: Springer, 1999: 398-416.
  • 6Brin S, Motwani R, Ullman J D, et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data[ C] J/Proceedings of 1997 ACM SIGMOD International Conference on Management of Data. Tucson: USA, ACM, 1997:255 - 264.
  • 7Song W, Yang B R, Xu Z Y. Index-Close Miner: An Improved Algorithm for Mining Frequent Closed hemset[J]. Intelligent Data Analysis, 2008,12(4) : 321 - 338.
  • 8Song W, Yang B R, Xu Z Y. Index-MaxMiner: A New Maximal Frequent Itemset Mining Algorithm[J]. International Journal on Artificial Intelligence Tools, 2005, 17 (2) :303 - 320.
  • 9Jorge A, Azevedo P J. An Experiment with Association Rules and Classification: Post-Bagging and Conviction[C] /// Proceedings of the 8th International Conference on Discover Science. Singapore: Springer, 2005: 137- 149.
  • 10Pasquier N, Taouil R, Bastide Y, et al. Generating A Condensed Representation for Association Rules [ J ]. Journal of Intelhgent Information Systems, 2005,24( 1): 29 - 60.

共引文献146

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部