摘要
发现频繁项集是关联规则挖掘的主要途径,也是关联规则挖掘算法研究的重点。关联规则挖掘的经典Apriori算法及其改进算法大致可以归为基于SQL和基于内存两类。为了提高挖掘效率,在仔细分析了基于内存算法存在效率瓶颈的基础上,提出了一种发现频繁项集的改进算法。该算法使用了一种快速产生和验证候选项集的方法,提高了生成项目集的速度。实验结果显示该算法能有效提高挖掘效率。
Discovering frequent item sets is the main way of association rules mining, and it is also the focus of the study in algorithms for association rules mining. The classical Apriori algorithm and its improved algorithms of association rules mining can be generally classified as one based on SQL and the other based on memory. To improve the data-mining efficiency, the authors proposed an efficient algorithm for discovering frequent item sets. After analyzing the efficiency bottlenecks in some algorithms based on memory, the algorithm used a method that could generate and test candidate item sets efficiently to optimize the speed of item sets generation. The experimental results show that the proposed algorithm can assuredly improve the mining efficiency.
出处
《计算机应用》
CSCD
北大核心
2010年第9期2332-2334,共3页
journal of Computer Applications
基金
江苏省产业信息化重点基金资助项目(1633000004)
关键词
数据挖掘
频繁项集
项集数组
逻辑运算
关联规则
data mining
frequent item set
item sets array
logic operation
association rule