期刊文献+

基于Bloom滤波器的对等网多关键字检索 被引量:1

Multi-keyword search over P2P based on Bloom filter
下载PDF
导出
摘要 现有基于Bloom滤波器(BF)的对等网(P2P)检索,由于索引表的不断增长且不能确定数据量的上限,存在两个问题:一是难以确定BF向量长度;二是不能高效处理P2P多关键字Top-k查询。提出了一种基于关键词频率进行分块的分块Dynamic Bloom Filter(BDBF)以解决上述问题;并给出了相应的P2P多关键字Top-k查询模型,即当节点传送BF时先传送高频DBF,如不能满足Top-k查询则继续传送次高频的BF。实验分析发现,该结构更能适应数据量的连续增长,降低网络传输流量,并能高效处理多关键字检索中的Top-k查询问题。 In keyword search over Peer-to-Peer ( P2P) based on standard Bloom Filter ( BF) , it is difficult to estimate the maximum number of the data sets because they are increasing continuously; hence, two problems show up: it is difficult to determine the upper value of the length of BF vector, and it cannot handle the multi-keyword search efficiently. To solve these problems, the authors proposed a new structure called Block Dynamic Bloom Filter ( BDBF) which partitioned the keyword based on the frequency, and presented a new Top-k multi-keyword search model: the node sends the higher frequency DBF firstly, and then sends the secondary higher frequency DBF if need. The experimental results show that the proposed method can be applicable for the increasing data of index list, and it can also decrease the network's traffic and efficiently resolve the problem of Top-k query in multi-keyword search over P2P.
出处 《计算机应用》 CSCD 北大核心 2010年第9期2335-2338,2343,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60573183 60872057 60803053) 浙江省自然科学基金杰出青年团队项目(R1090244) 浙江省自然科学基金资助项目(Y107293 Y1080212) 浙江省科技计划项目(2008C21083) 湖州市科技攻关项目(2008GG11)
关键词 对等网 多关键字检索 BLOOM滤波器 分块动态Bloom滤波器 Peer-to-Peer ( P2P) multi-keyword search Bloom Filter ( BF) Block Dynamic Bloom Filter ( BDBF)
  • 相关文献

参考文献15

  • 1BLOOM B H. Space/time trade-offs in Hash coding with allowable errors [ J]. Communications of the ACM, 1970, 13(7) : 422 - 426.
  • 2CHEN H, JIN H, WANG J, et al. Efficient muhi-keyword search over P2P Web [ C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008:989 -998.
  • 3GUO D, WU J, CHEN H, et al. Theory and network applications of dynamic Bloom filters [ C]// 25th IEEE Intemational Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies. Barcelona: IEEE Press, 2006:1653-1664.
  • 4FAN L, CAO P, ALMEIDA J, et al. Summary cache: A scalable wide-area Web cache sharing protocol [ J]. ACM Transactions on Networking, 2000, 8(3): 281-293.
  • 5BONOMI F, MITZENMACHER M, PANIGRAHY R, et al. An improved construction for counting Bloom filters [ C]// Proceedings of the 14th Conference on Annual European Symposium, LNCS 4168. Berlin: Springer, 2006:684-695.
  • 6FICARA D, GIORDANO S, PROCISSI G. MultiLayer compressed counting Bloom filters [ C]//27th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies. Phoenix: IEEE Press, 2008:311 - 315.
  • 7SAAR C, YOSSI M. Spectral Bloom filters [C]// Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego: ACM Press, 2003:241 -252.
  • 8AGUILAR-SABORIT J, TRANCOSO P, MUNTES-MULERO V. Dynamic count filters [J]. SIGMOD Record, 2006, 35(1): 26 -32.
  • 9肖明忠,代亚非,李晓明.拆分型Bloom Filter[J].电子学报,2004,32(2):241-245. 被引量:29
  • 10MITZENMACHER M. Compressed Bloom filters [ J]. IEEE/ACM Transactions on Networking, 2002, 10(5): 604 -612.

二级参考文献49

  • 1叶明江,崔勇,徐恪,吴建平.基于有状态Bloom filter引擎的高速分组检测[J].软件学报,2007,18(1):117-126. 被引量:13
  • 2Locasto M E, Parekh J J, Keromytis A D, et al. Towards collaborative security and P2P intrusion detection. In: Proc of SMC 2005, NY, USA, June 2005.
  • 3Hebden P, Pearce A R. Data-centric routing using bloom filters in wireless sensor networks. In: Proe of ICISIP 2006, Bangalore, India, December 2006.
  • 4Bloomfilter, http://wwwse.inf.tu-dresden.de/xsiena/bloom_filter.
  • 5Bloom B H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,1970,13(7):422-426.
  • 6Mcilroy M D. Development of a spelling list.IEEE Transactions on Communications,1982,30( 1):91-99.
  • 7Valdurez P, Gardarin G. Join and semijoin algorithms for a muhiprocessor database machine. ACM Transactions on Database Systems,1984,9(1): 133- 161.
  • 8Mackett L F, Lohman G M. Roptimizer validation and performance evaluation for distributed queries. In: Proc of the VLDB, Kyoto, Japan, August 1986.
  • 9Mullin J K. Optimal semijoins for distributed database systems. IEEE Transactions on Software Engineering,1990,16(5):558-560.
  • 10Fan L, Cao P, Almeida J, et al. Summary cache:a scalable wide-area Web cache sharing protocol ACM Transactions on Networking, 2000, 8(3): 281-293.

共引文献37

同被引文献15

  • 1李珺,刘晓光,王刚,刘璟.K分组合型Bloom Filter方法的设计[J].计算机研究与发展,2008,45(z1):48-52. 被引量:1
  • 2Burton HB. Space/time tmde-offs in hash coding with allowable errors. Cormnunications of the ACM, 1970, 13(7): 422-426.
  • 3Fan L, Cao P, Almeida J, et al. Summary cache: A scalable wide-area web cache sharing protocol. IEEE/ACM Trans. on Networking (TON), 2000, 8(3): 281-293.
  • 4Bonomi F, Mitzenmacher M, Panigrahy R, et al. An improved construction for counting bloom filters. Algorithms-ESA 2006 Lecture Notes in Computer Science, 2006. Zurich: Springer Berlin Heidelberg. 2006. 684-695.
  • 5Aguilar-Saborit J, Trancoso P, Muntes-Ulero V. Dynamic count filters. New York. ACM, 2006: 26-32.
  • 6Meng J. Partial Bloom Filter. http://blog.csdn.net/jiaomeng/ article/details/1502910. [2015-04-13].
  • 7Paulo SA, Carlos B, Nuno P, et al. Scalable bloom filters. Information Processing Letters, 2007, 101(6): 255-261.
  • 8Cheng X, Li HY, Wang Y, et al. BF-matrix: A secondary index for the cloud storage. In: Li FF, Li GL, eds. Web-Age Information Management: Lecture Notes in Computer Science. Macao: Springer International Publishing, 2014: 384-396.
  • 9王键.d-Left CBF技术在P2P中的研究[J].计算机工程与设计,2008,29(7):1711-1712. 被引量:1
  • 10魏静波,蒋平,朱劲.计数型Bloom Filter及其在机器人导航中的应用[J].微计算机信息,2008,24(35):241-243. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部