期刊文献+

基于局部线性嵌入的高光谱影像特征提取算法 被引量:2

Feature extraction of hyperspectral image based on locally linear embedding
下载PDF
导出
摘要 特征提取能够消除冗余信息,提高高光谱数据处理的精度和计算效率,是分类等分析必要的预处理手段.传统特征提取算法基于线性变换,无法准确描述高、低维特征空间的关系,因此采用一种新型非线性特征提取算法,即局部线性嵌入(LLE,Locally Linear Em-bedding),挖掘高光谱影像的本征信息.针对分类问题,使用训练样本类别属性修正距离矩阵,并借鉴LLE计算未知样本低维映射的方法求解测试样本的特征向量,实现监督局部线性嵌入(SLLE,Supervised Locally Linear Embedding).使用机载可见光/红外成像光谱仪数据,与3种分类算法结合进行测试,实验结果表明:SLLE优于线性特征提取算法,能够解决高光谱影像的小样本分类问题. Feature extraction can eliminate the redundant information hidden in the hyperspectral image.It is a necessary preprocessing step of the hyperspectral image analysis system,the classification for instance,to improve the precision and efficiency.Traditional feature extraction algorithms are based on linear transformation,which could not accurately describe the relationship between the original and reduced feature spaces.Therefore,locally linear embedding(LLE),the representative algorithm of nonlinear feature extraction,was adopted to reveal the intrinsic information of the hyperspectral image.For classification,the class labels of the training samples were utilized to adjust the distance matrix and the feature vectors of the test samples were calculated in the way that LLE mapped the unknown samples,realizing the supervised locally linear embedding(SLLE).In the experiment,the nonlinear feature extraction method was combined with three different classifiers and evaluated using the data collected by airborne visible/infrared imaging spectrometer.The experiments show that SLLE is superior to the linear feature extraction methods and can solve the small training set problem of classifying hyperspectral image.
作者 董超 赵慧洁
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第8期957-960,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 中国地质调查局资助项目(1212010816033) 863计划重点资助项目(2008AA121102)
关键词 遥感 特征提取 局部线性嵌入 流形学习 remote sensing feature extraction locally linear embedding manifold learning
  • 相关文献

参考文献5

  • 1Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290(22) :2319 -2323.
  • 2Roweis S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000,290 ( 22 ) : 2323 - 2326.
  • 3Kim D H,Finkel L H. Hyperspectral image processing using locally linear embedding[ C ]//Proc 1^ st 1EEE EMBS Conf Neural Enginneering. New York : IEEE ,2003:20 - 22.
  • 4Han T, Goodenough D G. Nonlinear feature extraction of hyperspectral data based on locally linear embedding [ C ]//Proc 1GARSS. New York : IEEE ,2005 : 1237 - 1240.
  • 5Ridder D,Duin R P W. Locally linear embedding for classification[ R]. Technical report PH-2002-01, Delft University of Technology, 2002.

同被引文献15

  • 1姚力群,陶卿.分类问题的一种流形学习算法[J].模式识别与人工智能,2005,18(5):541-545. 被引量:5
  • 2杜培军,方涛,林卉.高光谱遥感影像降维方法研究[M].北京:解放军出版社,2004:46-64.
  • 3CHOI H, CHOI S. Robust Kernel Isoma P [ J ] . Pattern Recognition ,2007,40(3 ) :853-862.
  • 4Roweis S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science,2000,290 (22).
  • 5ZHAO Q, ZHANG D, LU H. Suppervised LLE in ICA space for facial expression recognition [ C ]//Proceedings of International Conference on Neural networks and Brain, ChongQing : [ s, n ]. 2005 : 1970 - 1975.
  • 6李波,基于流形学习的特征提取方法及其应用研究[A].2008:56.59.
  • 7Sam T Roweis, Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding [ J]. Science,2000, 290 (5500) :2323-2326.
  • 8H S Seung, D D Lee. The manifold ways of perception [ J ]. Science , 2000,290 ( 5500 ) : 2268-2269.
  • 9Chang Chein-I. Spectral information divergence for hyper- spectral image analysis [ J ]. http ://www. google, com.
  • 10Jonas Franke,Dar A. Roberts,Kerry Halligan,Gunter Menz.Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments[J].Remote Sensing of Environment.2009(8)

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部