期刊文献+

基于改进粒子群算法的体绘制传递函数设计 被引量:1

Modified PSO method for automating transfer function designing in volume rendering
下载PDF
导出
摘要 为降低体绘制过程中人机交互的复杂性,提出一种体绘制传递函数的自动设计方法.该方法把对传递函数的抽象评价转变为对绘制图像的显式评价,然后将传递函数的设计转变为一个多参数优化问题,并使用改进的粒子群算法进行自动寻优.图像的评价使用图像信息熵、差分熵、边界熵和主观评价的融合方法.针对粒子群算法易于陷入局部最优的缺点,结合遗传算法的思想对粒子群算法进行改进.该方法在体绘制应用中,具有更好的全局搜索能力和更高的收敛速度.实验结果表明,在一般体绘制应用中,本文的方法可以在1.0~2.0min内完成传递函数设计,实现用户满意的体绘制效果. To reduce the complexity of human-computer interaction in volume rendering,this paper introduces an automated approach for transfer function designing in volume rendering.This approach transfers the abstract evaluation of a transfer function into the explicit evaluation of its rendering image,and then transfers the designing of a transfer function into a multi-parameter optimization problem.The image quality is assessed by combining image information entropy,differential entropy,boundary entropy,and human's subjective evaluation.Optimizing process utilizes an improved PSO(Particle Swarm Optimization)method which is strengthened by agenetic algorithm to avoid falling into the local optimum.The results of tests show that this modified PSO algorithm has a better global searching ability and efficiency in the application of volume rendering.The experimental results demonstrate that the proposed approach is able to design high-quality transfer functions according to the human's perspective in 1-2minutes for common cases.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1466-1472,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(10876036,10872182) 浙江省科技厅资助项目(2009C31112) 中央高校基本科研业务费专项资金(KYJD09009,2009QNA4037) 国家“水体污染控制与治理”科技重大专项(2009ZX07424-001)
关键词 体绘制 传递函数 粒子群算法 遗传算法 图像评价 volume rendering transfer function particle swarm optimization(PSO) genetic algorithm image evaluation
  • 相关文献

参考文献9

  • 1KINDLMANN G L. Transfer functions in direct volume rendering: design, interface, interaction [C]// Texas: Siggraph Course Note. 2002.
  • 2KINDLMANN G L, UIKIN J W. Semi-automatic generation of transfer functions for direct volume rendering [C]// Proceedings of Volume Visualization Symposium. Washington DC: IEEE, 1998:79-86.
  • 3TZENG F Y, MA K L. A cluster-space visual interface for arbitrary dimensional elassiffication of volume data [C]//Proceedings of Joint IEEE/EG Symposium on Visualization. Washington DC: IEEE, 2004 : 17 - 24.
  • 4TZENG F Y, ERIC B L, MA K L. An intelligent system approach tO higher-dimensional classification of volume data [J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(3) : 273 - 284.
  • 5HE T, HONG L, KAUFMAN A, et al. Generation of transfer functions with stochastic search techniques [C]//Proceedings of IEEE Visualization. Washington DC: IEEE, 1996:227 - 234.
  • 6王彦妮,郑耀.转换函数和视点选择的智能体视化[J].计算机辅助设计与图形学学报,2008,20(5):565-570. 被引量:5
  • 7EBERHART R C, SHI Y H. Particle swarm optimization: developments, applications and resources [C]// Proceedings of the IEEE Congress on Evolutionary Computation. Washington DC: IEEE, 2001: 81- 86.
  • 8ZACHARY J M. An information theoretic approach to content based image retrieval [D]. Louisiana: Louisiana State University, 2000.
  • 9STEGMAIER S, STRENGERT M, KLEIN T, et al. A simple and flexible volume rendering framework for graphics-hardware-based ray casting [C]// Proceedings of Volume Graphics. New York: [s. n. ], 2005:187 - 195.

二级参考文献8

  • 1Kaufman A, Mueller K. Overview of volume rendering[M]// Johnson C, Hansen C. Visualization Handbook, Burlington, MA: Elsevier, 2005
  • 2He T, Hong L, Kaufman A, et al. Generation of transfer functions with stochastic search techniques[C] //Proceedings of the 7th IEEE Visualization, San Francisco, 1996:227-234
  • 3Tzeng F Y, Lum E B, Ma K L. A novel interface for higherdimensional classification of volume data[C]// Proceedings of the 14th IEEE Visualization, Seattle, Washington, 2003: 505-512
  • 4Tzeng F Y, Lum E B, Ma K L. An intelligent system approach to higher-dimensional classification of volume data [J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(3): 273-284
  • 5Tzeng F Y, Ma K L. A cluster-space visual interface for arbitrary dimensional classification of volume data [C]// Proceedings of the Joint Eurographics-IEEE TCVG Symposium on Visualization, Konstanz, 2004:17-24
  • 6Takahashi S, Fujishiro I, Takeshima Y, et al. A featuredriven approach to locating optimal viewpoints for volume visualization[C]// Proceedings of the 16th IEEE Visualization 2005, Washington D C, 2005:495-502
  • 7Bordoloi U D, Shen H W. View selection for volume rendering [C]// Proceedings of the 16th IEEE Visualization 2005, Washington D C, 2005:487-494
  • 8Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources[C]// Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, 2001:81-84

共引文献4

同被引文献17

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部