期刊文献+

基于局域波法和KPCA-LSSVM的滚动轴承故障诊断 被引量:14

Rolling bearing fault diagnosis based on local wave method and KPCA-LSSVM
下载PDF
导出
摘要 针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作为原始特征向量,再用KPCA将原始特征向量映射到高维特征空间提取主元构造新的特征向量,将其作为LSSVM分类器的输入来实现轴承的故障诊断.故障诊断试验结果表明,KPCA-LSSVM诊断方法通过KPCA得到更多的识别信息,改善了LSSVM的分类性能,相对于直接LSSVM诊断方法具有更优的泛化性,可准确识别轴承的故障类别和严重程度. Aimed at the non-stationary characteristics of rolling bearing vibration signal,a fault diagnosis method was proposed based on local-wave method and KPCA(kernel principal component analysis)-LSSVM(least squares support vector machine).Firstly,local wave decomposition was used to decompose rolling bearing vibration signal into several intrinsic mode function(IMF),whose feature energy,singular values and AR model parameters were computed as initial feature vectors.Secondly,ini tial feature vectors were mapped into a higher-dimensional space with KPCA,and the kemel principal components were extracted as new feature vectors,which used as the input of LSSVM for fault classification.The experimental results show the KPCA-LSSVM method improves LSSVM's classification performance by KPCA obtaining additional discriminative information,and has better generalization than direct LSSVM method,and can identify rolling bearing fault patterns more accurately.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1519-1524,共6页 Journal of Zhejiang University:Engineering Science
关键词 滚动轴承 故障诊断 局域波法 核主元分析 最小二乘支持向量机 rolling bearing fault diagnosis local-wave method kernel principal component analysis(KPCA) least squares support vector machine(LSSVM)
  • 相关文献

参考文献12

  • 1SUYKENS J A K, VANDEWALLE J. Least squares support vectors machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 2甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报(工学版),2007,41(2):245-248. 被引量:27
  • 3OJEDA F, SUYKENS J A K, MOOR B D. Low rank updated LS-SVM classifiers for fast variable selection [J]. Neural Networks, 2008, 21(2/3): 437-449.
  • 4康海英,栾军英,郑海起,崔清斌.基于阶次跟踪和经验模态分解的滚动轴承包络解调分析[J].机械工程学报,2007,43(8):119-122. 被引量:37
  • 5张海勇.一种新的非平稳信号分析方法——局域波分析[J].电子与信息学报,2003,25(10):1327-1333. 被引量:35
  • 6XU Yong, ZHANG David, SONG Feng-xi, et al. A method for speeding up feature extraction based on KPCA [J]. Neuroeomputing, 2007, 70(4-6) : 1056 - 1061.
  • 7HUANG N E, SHEN Z, STEVEN R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, A. 1998, 454(19): 903-995.
  • 8孙晖,朱善安.基于自适应滤波的滚动轴承故障诊断研究[J].浙江大学学报(工学版),2005,39(11):1746-1749. 被引量:12
  • 9RILLING G, FLANDRIN P, GONCALVES P. On empirical mode decomposition and its algorithms [C]// IEEE EURASIP Workshop on NSIP-03, Grado, Italy: IEEE, 2003: 8-11.
  • 10SCHLOGL A. A comparison of multivariate autoregressive estimators [J]. Signal Processing, 2006, 86: 2426 - 2429.

二级参考文献32

  • 1杨世锡,胡劲松,吴昭同,严拱标.基于高次样条插值的经验模态分解方法研究[J].浙江大学学报(工学版),2004,38(3):267-270. 被引量:16
  • 2程军圣,于德介,邓乾旺,杨宇,张邦基.时间-小波能量谱在滚动轴承故障诊断中的应用[J].振动与冲击,2004,23(2):34-36. 被引量:31
  • 3于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-335. 被引量:47
  • 4N E Huang, Z Shen, S R Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc Roy Soc , London A,1998, 454, 903-995.
  • 5B Boashash, Estimating and interpreting the instantaneous frequency of a signal, Part Ⅰ: Fundamentals, Proc IEEE, 1992, 80(4), 520-538.
  • 6L Cohen, Time-Frequency Analysis, Englewood Cliffs, N J, Prentice-Hall, 1995, Chapter 1.
  • 7W K Melville, Wave modulation and breakdown, J Fluid Mech , 1983, 128(3), 489-506.
  • 8Yu Bo, Ma Xiaojiang, A new method for the analysis of non-stationary nonlinear vibration signal and its use in machine fault diagnosis, Proc of ICVE, Dalian, 1998, 668-671.
  • 9Zhang Haiyong, Ma Xiaojiang, GaiQiang, Wigner-Ville distribution based on intrinsic mode functions, Proc of ICR, Beijing, 2001, 1015-1017.
  • 10X Zhu, Z Shen, S D Eckermann, et al. Gravity wave characteristics in the middle atmosphere derived from the empirical mode decomposition method, J Geophys Res , 1997, 102(D14),16545-16561.

共引文献107

同被引文献126

引证文献14

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部