摘要
讨论了著名的Belousov-Zhabotinskii化学反应的一些数学模型的单调和非单调行波解的存在性。对波前解来说,证明了对一个简单模型找到的临界波速c_0=(1-r)^(-2)/1是最小波速。对于较为复杂一点的模型,应用Kozjakin VS和Krasnosel’skii M A得到的一个Hopf分歧定理,证明了周期行波解的存在性。
The existence of monotone and nonmonotone traveling wave solutions for some simplified models of Belousov-Zhabotinskii chemical reaction is discussed . First-ly , the critical value of the wave speed found in a previous paper for a simplified model is proved to be the least wave speed . Secondly, using a Hopf bifurcation theorem developed by Kozjakin V S and Krasnosel'skii M A the existence of periodical traveling wave solutions for a more complicated model is proved .
出处
《北京理工大学学报》
EI
CAS
CSCD
1989年第4期5-9,共5页
Transactions of Beijing Institute of Technology
基金
Research supported by the National Natural Scinece Foundation of China
the research grant from Beijing Institute of Technology
关键词
扩散反应方程
行波解
HOPF分歧
diffusion raction equation/traveling wave front solutions , Hopf bifurcation theorem .