摘要
讨论了RN(N≥3)中有界区域Ω上一类带临界增长的拟线性退缩的椭圆方程-Di[g(|u|p)|u|p-2Diu]=λuα+uq-1+f(x,u)的Dirichlet问题正解的存在性.其中1<p<N<2p,q=Np/(N-p),由于q是W1,p(Ω)嵌入到Lq(Ω)的极限指数.此时嵌入非紧,方程对应的变分泛函在W1,p(Ω)中不满足(p,s)条件,这给寻求方程的正解造成了困难,文中用没有(p,s)条件的山路引理和Lions的集中紧性原理证明了方程的能量泛函至少有两个临界点。
The existence of positive solutions on a class of degenerate quasilinear elliptic equations involving critical Sobolev exponents - D i[g(|FDA1u| p)|FDA1u| p-2 D iu]=λu α-1 +u q-1 +f(x,u) under Dirichlet boundary condition was discussed, where ΩR N(N≥3) is a bounded domain, 1 <p<N<2p, q=NpN-p . Because q is the limiting Sobolev exponent for the embedding W 1,p (Ω)L q(Ω) , the embedding is not compact, which brings about many difficulties to seek the positive solutions of the equation. By a mountain pass lemma without (p,s) condition and Lions' concentration compactness principle, this paper proved that the corresponding functional of the equation has at least two critical points, so the two positive solutions of the problem are obtained.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1999年第6期657-660,共4页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金
国家博士点基金
关键词
椭圆型方程
SOBOLEV指数
正解
多重性
degenerate elliptic equation
critical Sobolev exponent
positive solutions