期刊文献+

服务设施选址的博弈分析 被引量:2

Location Games for Service Facilities
下载PDF
导出
摘要 市场除具有网络特征外,还具有明显的层次嵌套特征。文章结合这两个方面的特征,对具有层次嵌套特征的人口、市场空间分布条件下服务设施的选址博弈问题进行了研究。结果发现,两个企业的服务设施竞争选址静态博弈,可以不存在纳什均衡;在纳什均衡存在的情况下,并不能保证双方市场份额相等;市场层次嵌套特征在一定程度上破坏均衡的存在,内层市场较大的市场份额吸引着对手进入,使外层市场均衡受到破坏;增加服务设施可以扩大市场覆盖范围,但由于利润最大化目标和距离的约束,在给定市场环境下,有些市场区域可能永远无法覆盖。 A study about the competitive location by Hotelling in 1929 was on a linear market. Other studies on this subject are on plane, circle, or network markets. This paper addresses the subject on a general market with nested hierarchies. For static models with two firms, it is shown that there is no Nash equilibrium sometimes; even if the equilibria existing, the market shares for two firms may not be equal; the nested hierarchies of markets, to an extent, lead to the non-existence of Nash equilibria because the more shares within inner markets, which motivate the other players in the games to enter, make unstable outer markets; increasing the number of facilities may extend the coverage of marketing areas, but there are some areas which may not be covered under a given marketing environment due to the objectives of profit maximization and the distance constraints on consumers.
作者 孟尚雄
出处 《中国流通经济》 CSSCI 北大核心 2010年第9期49-52,共4页 China Business and Market
基金 北京市教委“偏覆盖选址模型与算法”(项目编号:KM200810037003)的部分研究成果.
关键词 选址问题 纳什均衡 聚类分析 层次嵌套 location problems: Nash equilibrium: cluster analysis: nested hierarchies
  • 相关文献

参考文献14

  • 1H. Hotelling.Stability in Competition [J].Economic Journal, 1929, 39: 41-57.
  • 2S. P. Anderson. Equilibrium Existence in A Linear Model of Spatial Competition [J].Economiea, 1988,55: 479-491.
  • 3A. Okabe, M. Aoyagy. Existence of Equilibrium Configurations of Competitive Firms on An Infinite Two-dimensional Space [J]. Journal of Urban Economics, 1991,29: 349-370.
  • 4S.L.Hakimi. Location with Spatial Interactions: Competitive Location and Games [A]//R.L. Francis, P.B. Mirchandani (Eds.). Discrete Location Theory [M]. New York: Wiley, 1990: 439-478.
  • 5H.A. Eiseh, G. Laporte. Competitive Spatial Models[J].European Journal of Operational Research, 1989, 39: 231-242.
  • 6M. Labbe, S. L. Hakimi. Market and Locational Equilibrium for Two Competitors [J].Operations Research, 1991,39: 749-756.
  • 7R.L.Tobin, T.L.Friesz, T.Miller. Existence Theory for Spatially Competitive Network Facility Location Models[J].Annals of Operations Research, 1989,18: 267-276.
  • 8H.A. Eiselt, G. Laporte, J.F. Thisse. Competitive Location Models:A Framework and Bibliography[J].Transportation Science, 1993,27: 44-54.
  • 9H.K.Ahn, S.W.Cheng, O.Cheong, M.Golin,R.Oostrum.Competitive Facility Location:the Voronoi Game [J]. Theoretical Computer Science, 2004, 310: 457-467.
  • 10V. Mazalov, M. Sakaguchi. Location Game on the Plane [J]. International Game Theory Review,2003,5 (1): 13-25.

二级参考文献10

  • 1李丹,任义权,董长春.从营销角度看服务型企业选址[J].经济论坛,2005(4):58-59. 被引量:1
  • 2周根贵,曹振宇.遗传算法在逆向物流网络选址问题中的应用研究[J].中国管理科学,2005,13(1):42-47. 被引量:60
  • 3B.Berman and J.R.Evans.Retailing Managemem: A Strategic Approach [M].Macmillan, New York, 1995.261-331.
  • 4C.Toregas and C.ReVelle.Optimal locaction under time or distance constraints.Papers of the Regional Science Association, 1972, (28) : 133-143.
  • 5M.E.O'Kelly. A clustering approach to the planar hub location problem.Annals of Operations Research, 1992,(40) : 339-353.
  • 6J.Current,et al.Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach.European Journal of Operational Research,1997, (110) :597-609.
  • 7P.Beraldi, M.E.Bnmi and D.Conforti.Designing robust emergency medical service via stochastic programming. European Journal of Operational Research 2004, (158) : 183-193.
  • 8A.D.Gordon.Hierarchical classification, In: P.Arabie, et al. (.Eds.), Clustering and classification, World Scientific,Singapore, 1996.65-121.
  • 9孟尚雄.连锁网点的选择模型[J].商业研究,1998(2):61-64. 被引量:5
  • 10汪波,禤文怡.基于指标满意度算法的物流中心选址方法[J].工业工程,2004,7(2):12-15. 被引量:62

同被引文献43

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部