期刊文献+

基于多分辨率信号分解的低轨通信卫星频谱感知 被引量:1

The LEO Satellite Spectrum Sensing Based on the Multi-resolution Signal Decomposition
下载PDF
导出
摘要 选择合适的频率分辨率进行能量检测是低轨卫星通信频谱感知的关键技术,分辨率过大会造成漏检,分辨率过小会增加计算量并且造成虚警。另外由于反向链路的感知数据需要发送到地面站进行综合判决,数据量越小越利于传输。为了提高检测精度和降低数据传输量,该文提出基于多分辨率信号分解技术的低轨通信卫星频谱感知,仿真结果表明:在反向感知数据传输中,利用多分辨率信号分解技术在大幅减少频谱感知数据量时,仍能良好保持谱密度函数的特征;在频谱空穴检测中,多分辨率信号分解技术与固定分辨率检测技术相比,大幅提高了空穴定位的收敛速度,同时减少了空穴数量的统计误差。 In the LEO satellite spectrum sensing,choosing a proper frequency resolution for detecting the energy is very crucial. A too high resolution fails to detect spectrum holes which probably exist,while a too low one adds the computation and misjudges the jitter in frequency-domain as holes. Moreover,because backward-link sensing data need to be transferred to ground stations to do synthesis and detection,it is obvious that the smaller the quantity of data is,the easier for it to be transmitted. In order to improve the detecting accuracy and to reduce transmitting information,this paper proposes a LEO satellite spectrum sensing based on the multi-resolution signal decomposition. The simulation of this technology concludes that in backward sensing data transmission,multi-resolution signal decomposition can keep well shape of power spectral density function while largely decreasing spectrum sensing data. Besides,in the process of spectrum hole detecting,compared to fixed-resolution detecting,this technology can raise greatly the convergence rate of spectrum hole location and meantime reduce statistical error of holes.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第9期2072-2076,共5页 Journal of Electronics & Information Technology
基金 上海市自然科学基金(09ZR1430400)资助课题
关键词 低轨通信卫星 频谱感知 信号分解 多分辨率分析 LEO satellite Spectrum sensing Signal decomposition Multi-resolution analysis
  • 相关文献

参考文献10

  • 1Islam M H,Koh C L,and Oh S W.Spectrum survey in Singapore:occupancy measurements and analyses.CrownCom 2008,3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications,Singapore,May,2008:1-7.
  • 2Yucek T and Arslan H.A survey of spectrum sensingalgorithms for cognitive radio applications[J].IEEECommunications Surveys & Tutotials,.2009,11(1):116-130.
  • 3Notice of proposed rulemaking on facilitating opportunities for cognitive radio technologies,FCC ET Docket No.03-108,December 2003.
  • 4Murray J and Anderson J.MUOS_RRDD_SEIT_029,MUOS engineering memorandum:MUOS spectrum adaptation CONOPS.Revision XD,December 2006.
  • 5Spooner C M.Multi-resolution white-space detection for cognitive radio,Military Communications Conference,MILCOM2007,IEEE,Orlando,Oct.29-31,2007:1-9.
  • 6Gardner W A.Statistical Spectral Analysis,Englewood Cliffs,NJ:Prentice-Hall,1987,Chapter 4.
  • 7Haykin S.Cognitive radio:Brain-empowered wireless communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
  • 8Ready M J,Downey M L,and Cobalis L J.Automatic noise floor spectrum estimation in the presence of signals.http://www.appsig.com/products/829b.htm,2005.
  • 9Goutsias J and Heijmans H J.Nonlinear multiresolution signal decomposition schemes-Part I:Morphological pyramids.IEEE Transactions on Image Processing,2000,9(11):1862-1876.
  • 10Burt P J and Adelson E H.The Laplacian pyramid as a compact image code.IEEE Transactions on Communications,1983,COM-31(4):532-540.

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部