期刊文献+

求解椭圆边值问题惩罚形式的间断有限元方法 被引量:1

DISCONTINUOUS FINITE ELEMENT METHOD WITH PENALTY FOR ELLIPTIC BOUNDARY VALUE PROBLEMS
原文传递
导出
摘要 本文提出了一个新的求解二阶椭圆边值问题的惩罚形式间断有限元方法并给出了稳定性和收敛性分析.特别地,本文建立了间断有限元解的基于余量的后验误差估计,给出了求解间断有限元方程的自适应算法. In this paper, we present a new discontinuous finite element method with penalty for solving the second order elliptic boundary value problems, and then the stability and con- vergence analyses are given. In particular, we derive a residual-based reliable a posteriori error estimator and establish the corresponding adaptive algorithms for the discontinuous finite element method.
机构地区 东北大学数学系
出处 《计算数学》 CSCD 北大核心 2010年第3期275-284,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金(10771031)资助项目
关键词 椭圆边值问题 间断有限元方法 稳定性和收敛性 后验误差估计 自适应计算 Elliptic problem discontinuous finite element method stability and convergence a posteriori error analysis adaptive computation
  • 相关文献

参考文献14

  • 1Cockburn B, Karniadakis G E, Shu C W. Discontinuous Galerkin Methods[M]. Lecture Notes Comput. Sci. Eng. 11, Berlin: Springer-Verlag, 2000.
  • 2Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J. Numer. Anal., 2001, 39: 1749-1779.
  • 3Cockburn B, Shu C W. Runge-Kuttu discontinuous Galerkin methods for convection-dominated problems(review article)[J]. J. Sci. Compu., 2001, 16: 173-261.
  • 4Reed W H, Hill T R. Triangular mesh methods for neutron transport equation[R]. LA-Ur-73-479, Los Alamos Scientific Laboratory, 1973.
  • 5张铁.一阶双曲方程组的间断有限元方法.东北大学学报,1987,51:250-257.
  • 6Brezzi F, Manzini G, Marini D, et al. Discontinuous Galerkin approximations for elliptic problems[J]. Numer. Methods PDE., 2000, 16: 365-378.
  • 7Castillo P, Cockburn B, Perugia I, et al. An a priori error analysis of the local discontinuous Calerkin methods for elliptic problems[J]. SIAM J. Numer. Anal., 2000, 38: 1676-1706.
  • 8Douglas Jr J, Dupont T. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods[M]. Lecture Notes in Phys. 58, Berlin: Springer-Verlag, 1976.
  • 9Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM J. Numer. Anal., 1982, 19: 742-760.
  • 10Oden J T, Babuska I, Baumann C E. A discontinuous hp finite element method for diffusion problem[J]. J. Comput. Phys., 1998, 146: 491-519.

同被引文献6

  • 1Babuska I,OH H S.The p-version of the finite elementmethod for domains withcorners and for infinite do-mains[J].Numer.Methods PDEs,1990,6:371-392.
  • 2Thatcher R W.The use of infinite grid refinement atsingularities in the solution of Laplace's equation[J].Numer.Math.,1976,25:163-178.
  • 3Givoli D,Rivkin L,Keller J B.A finite element methodfor domains with corners[J].Int.J.Numer.MethodsEngrg.,1992,35:1329-1345.
  • 4Wu X N,Han H D.A finite-element method for lpal-ace-andhelmholtz-type boundary value problems withsingularities[J].SIAM J.Numer.Anal.,1997,34(3):1037-1050.
  • 5Feng X B,Wu H J.discontinuous galerkin methods forthe helmholtz equation with large wave number[J].SI-AM J.Numer.Anal.,2009,47(4):2872-2896.
  • 6Arnold D N,Brezzi F,Cockburn B,et al.Unified analy-sis of discontinuous Galerkin methods for elliptic prob-lems[J].SIAM J.Numer.Anal.,2002,39:1749-1779.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部