期刊文献+

自适应差异演化算法及其应用

Adaptive differential evolution and its application
下载PDF
导出
摘要 差异演化(Differential Evolution,DE)算法是一种基于群体差异的演化算法,具有良好的优化性能,但是对于高维复杂函数,DE算法易早熟收敛。为此,在对DE算法参数分析的基础上,提出自适应缩放因子及自适应交叉率两个概念,进而提出一种自适应差异演化(Adaptive Differential Evolution,ADE)算法。利用群体差异度对DE算法进行分期,一方面使缩放因子在前期较大,在进化的中期先变小,后增大,在进化的后期,缩放因子较小;另一方面使DE算法的交叉率在前期较小,中期在一定范围内随机取值,进化后期较大。仿真实验结果与工程应用实例表明,ADE算法在收敛速度和全局搜索能力方面得到了较好的平衡,不仅保证了ADE算法的收敛速度,而且具有较好的全局搜索能力。 Differential Evolution(DE)is one kind of evolution algorithm,which based on difference of individuals.DE has exhibited good porformance on optimization.However the algorithm,to the hign dimension and perplexed funtion,will fall into premature convergence.An adptive scaling factor and catastrophe factor are presented in this document,which based on the analysis of the parameters of differential evolution,and then an Adaptive Differential Evolution(ADE)algorithm is proposed.An adaptive scaling factor and crossover ratio are presented in this document.Divided the algorithm into three partitions according to the difference of population.Firstly,it has a comparatively large scaling factor in first partition and decreasing then increasing scaling factor in second partition and a comparatively small scaling factor in last partition.Secondly,it has a comparatively small crossover ratio in first partition and a random value of certain limit in next partition and a comparatively large value in last partition.Results of simulations and engineering optimization design example show that ADE compromise the algorithm convergence speed and global optimal capabilities,not only guarantees the convergence rate,but also has better global optimal ability.
出处 《现代制造工程》 CSCD 北大核心 2010年第9期16-21,101,共7页 Modern Manufacturing Engineering
基金 山西省研究生优秀创新项目(20093022) 山西省自然科学基金项目(2008011027-1) 2009年度"高等学校博士学科点专项科研基金"联合资助项目(20091415110002)
关键词 差异演化 自适应 缩放因子 交叉率 Differential Evolution(DE) adptive scaling factor crossover ratio
  • 相关文献

参考文献19

二级参考文献49

  • 1高飞.基于空间收缩的种群灭亡差异演化算法[J].复杂系统与复杂性科学,2004,1(2):87-92. 被引量:12
  • 2刘明广.差异演化算法及其改进[J].系统工程,2005,23(2):108-111. 被引量:38
  • 3刘明广,李高扬.差异演化算法在机械优化设计中的应用[J].机床与液压,2006,34(5):63-65. 被引量:8
  • 4郭振宇,康龙云,程博,叶敏,曹秉刚.一种动态改变权重因子和交叉率的混沌差异演化算法[J].哈尔滨工程大学学报,2006,27(B07):523-526. 被引量:8
  • 5Han J W, Kamber M. Data Mining: Concepts and Techniques[ M]. 2ed., San Francisco: Morgan Kaufmann Publishers, 2001:223 - 250.
  • 6Dunn J C. A Fuzzy Relative of the ISODATA PRocess and Its Use in Detecting Compact Well-Separaled Clusters [J]. Q Cybernet, 1974 (3): 32-57.
  • 7Lawrence O Hall, Ibrahim Burak O Zyurt, James C. Bezdek. Clustering with A Genetically Optimized Approach[J]. IEEE Trans Evol Comput, 1999,3(2): 103 - 112.
  • 8Bandyopadhyay Sanghamitra, Maulik Ujjwal. Genetic Clustering for Automatic Evolution of Clusters and Appli- cation to Image Classification [J].Pattern Recognition, 2002,35(6) : 1197 - 1208.
  • 9Maulik U, Bandyopadhyay S. Fuzzy Partitioning Using A Real-Coded Variablelength Genetic Algorithm for Pixel Classification [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5) : 1075 - 1081.
  • 10Malay K, Pakhira, Sanghamitra Bandyopadhyay, Ujjwal Maulik A Study of Some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification [J]. Fuzzy Sets and Systems, 2005,155(2) : 191 - 214.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部